1255 Fuller Avenue Town of Penetanguishene

Traffic Impact Study for 1000239074 Ontario Inc.

Type of Document: Final Report

> Project Number: JDE – 21181

Date Submitted: August 9th, 2023

John Northcote, P.Eng. Professional License #: 100124071

JD Northcote Engineering Inc. 86 Cumberland Street Barrie, ON 705.725.4035 www.JDEngineering.ca

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of 1000239074 Ontario Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **JD Northcote Engineering Inc.** accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study prepared for the proposed residential development located on the east side of Fuller Avenue, south of Sandy Bay Road, municipally known as 1255 Fuller Avenue in the Town of Penetanguishene [Town]. The report assesses the impact of traffic related to the development on the adjacent roadway and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed development is anticipated to include 27 single-detached units, 4 semi-detached units and 33 townhouse units. Access to the development will be provided via one full-movement access onto Sandy Bay Road [Site Access].

The scope of this analysis includes a review of the following intersections:

- Fuller Avenue / Robert Street East;
- Fuller Avenue / Sandy Bay Road;
- Fuller Avenue / Broad Street; and
- Sandy Bay Road / Site Access.

Conclusions

- 1. The proposed development is expected to generate a total of 40 AM and 50 PM peak hour trips.
- 2. Detailed intersection counts were commissioned at the study intersections by JD Engineering.
- 3. An intersection operation analysis was completed at the study area intersections using the existing and background (2025, 2030 and 2035) traffic volumes, with consideration for the projected adjacent development traffic growth and without the proposed development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development.
- 4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
- 5. An intersection operation analysis was completed under total (2025, 2030 and 2035) traffic volumes with the proposed development operational at the study area intersections. No improvements are recommended within the study area.
- 6. The proposed Site Accesses will operate efficiently with one-way stop control for egress movements. A single lane for ingress and egress movements will provide the necessary capacity to convey the traffic volume generated by the proposed development.
- 7. The sight distance available for the proposed Site Access is suitable for the intended use.
- 8. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Table of Contents

1	Introduction	1
1.1	Background	1
1.2	Study Area	1
1.3	Study Scope and Objectives	2
1.4	Horizon Year and Analysis Periods	3
2	Information Gathering	3
2.1	Street and Intersection Characteristics	3
2.2	Local Transportation Infrastructure Improvements	4
2.3	Transit Access	5
2.4	Development Growth	5
	2.4.1 Development Growth Traffic Generation	7
	2.4.2 Adjacent Development Traffic Volume Assignment	8
2.5	Background Traffic Growth	8
2.6	Traffic Counts	8
2.7	Existing Traffic Volumes	8
2.8	Horizon Year Traffic Volumes	8
3	Intersection Operation without Proposed Development	9
3 3.1	Intersection Operation without Proposed Development	9 9
3 3.1 3.2	Intersection Operation without Proposed Development Introduction Existing Intersection Operation	9 9 0
3 3.1 3.2 3.3	Intersection Operation without Proposed Development	9 0
3 3.1 3.2 3.3 3.4	Intersection Operation without Proposed Development	9 0 0
3 3.1 3.2 3.3 3.4 3.5	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation 1 Background (2030) Intersection Operation 1 Background (2035) Intersection Operation 1	9 0 1 2
 3.1 3.2 3.3 3.4 3.5 4 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation 1 Proposed Development Traffic Generation and Assignment	9 0 1 2 4
 3.1 3.2 3.3 3.4 3.5 4 4.1 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Traffic Generation 1	 9 0 1 2 4
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation Proposed Development Traffic Generation and Assignment Traffic Generation 1 Traffic Assignment	 9 0 0 1 2 4 4 4
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation Background (2035) Intersection Operation Intersection Intersection Intersection Intersection Intersection Intersection Intersection Intersection	 9 0 1 2 4 4 5
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 5 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation Proposed Development Traffic Generation and Assignment Traffic Generation 1 Traffic Assignment 1 Total Horizon Year Traffic Volumes with the Proposed Development 1 Intersection Operation with Proposed Development	9 0 1 2 4 4 5 5
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 5 5.1 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation Background (2030) Intersection Operation Background (2035) Intersection Operation Proposed Development Traffic Generation and Assignment Traffic Generation 1 Traffic Assignment 1 Total Horizon Year Traffic Volumes with the Proposed Development 1 Intersection Operation 1 Total (2025) Intersection Operation	9 0 1 2 4 4 5 5 5
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 5 5.1 5.2 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation 1 Background (2030) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Proposed Development Traffic Generation and Assignment 1 Traffic Generation 1 Traffic Assignment 1 Total Horizon Year Traffic Volumes with the Proposed Development 1 Intersection Operation 1 Total (2025) Intersection Operation 1 Total (2030) Intersection Operation	9 9 0 1 2 4 4 5 5 7
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 5 5.1 5.2 5.3 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation Background (2025) Intersection Operation 1 Background (2030) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Proposed Development Traffic Generation and Assignment 1 Traffic Generation 1 Traffic Assignment 1 Total Horizon Year Traffic Volumes with the Proposed Development 1 Intersection Operation 1 Total (2025) Intersection Operation 1 Total (2030) Intersection Operation 1 Total (2030) Intersection Operation 1 Total (2035) Intersection Operation	9 9 0 1 2 4 4 5 5 7 8
 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 	Intersection Operation without Proposed Development Introduction Existing Intersection Operation 1 Background (2025) Intersection Operation 1 Background (2030) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Background (2035) Intersection Operation 1 Proposed Development Traffic Generation and Assignment 1 Traffic Generation 1 Traffic Assignment 1 Total Horizon Year Traffic Volumes with the Proposed Development 1 Intersection Operation 1 Total (2025) Intersection Operation 1 Total (2030) Intersection Operation 1 Total (2035) Intersection Operation 1 Total (2035) Intersection Operation 1 Site Access	9 9 0 1 2 4 4 5 5 7 8 9

Summary

List of Tables

Table 1 – Adjacent Development Summary Table 2 – ITE Traffic Constration Potes & Equations	7
Table 3 – Estimated Traffic Generation – Adjacent Developments	7
Table 4 – Traffic Count Data	8
Table 5 – Level of Service Criteria for Intersections	9
Table 6 – Existing (2023) LOS	.10
Table 7 – Background (2025) LOS	.11
Table 8 – Background (2030) LOS	.12
Table 9 – Background (2035) LOS	.13
Table 10 – ITE Traffic Generation Trip Rates & Fitted Curve Equations (Subject Site)	.14
Table 11 – Estimated Trip Generation of the Proposed Development	.14
Table 12 – Proposed Development Traffic Distribution	.15
Table 13 – Total (2025) LOS	.16
Table 14 – Total (2030) LOS	.17
Table 15 – Total (2035) LOS	.18

List of Figures

Figure 1 – Proposed Site Location and Study Area	2
Figure 2 – Existing Intersection Spacing and Lane Configuration within Study Area	4
Figure 3 – Adjacent Development Location	6
Figure 4 – Adjacent Development Traffic Volumes – 1145 Fuller Avenue	21
Figure 5 – Adjacent Development Traffic Volumes – 123 Robert Street East	22
Figure 6 – Adjacent Development Traffic Volumes – 15 Sheffcote Street	23
Figure 7 – Adjacent Development Traffic Volumes – 177 Robert Street East	24
Figure 8 – Adjacent Development Traffic Volumes – Total (2025)	25
Figure 9 – Existing (2023) Traffic Volumes	
Figure 10 – Background (2025) Traffic Volumes	27
Figure 11 – Background (2030) Traffic Volumes	28
Figure 12 – Background (2035) Traffic Volumes	29
Figure 13 – Site Traffic Assignment	30
Figure 14 – Total (2025) Traffic Volumes	31
Figure 15 – Total (2030) Traffic Volumes	32
Figure 16 – Total (2035) Traffic Volumes	33

List of Appendices

APPENDIX A – Site Plan	
APPENDIX B – Adjacent Development Excerpts	
APPENDIX C – Traffic Count Data	

APPENDIX D – Synchro Analysis Output – Existing Traffic Volumes

APPENDIX E – Synchro Analysis Output – Background Traffic Volumes

APPENDIX F – Transportation Tomorrow Survey – Excerpt

APPENDIX G – Synchro Analysis Output – Total Traffic Volumes

APPENDIX H – MTO Left Turn Analysis

APPENDIX I – OTM Signal Justification Sheets

1 Introduction

1.1 Background

1000239074 Ontario Inc. [the Developer] is proposing a residential development located on the east side of Fuller Avenue, south of Sandy Bay Road, municipally known as 1255 Fuller Avenue in the Town of Penetanguishene [Town].

The proposed development is anticipated to include 27 single-detached units, 4 semi-detached units and 33 townhouse units. Access to the development will be provided via one full-movement access onto Sandy Bay Road [Site Access].

It is anticipated that ultimate build-out will occur by 2025.

The Developer has retained **JD Northcote Engineering Inc.** [JD Engineering] to prepare this traffic impact study in support of the proposed development.

1.2 Study Area

Figure 1 shows the location of the subject site and study area intersections in relation to the surrounding area. The Draft Plan of Subdivision by Morgan Planning & Development Inc. is provided in **Appendix A**.

The subject site is bound by Fuller Avenue to the west, Sandy Bay Road to the north, and existing residential lands to the east and south.

Through consultation with the Town, the following intersections are included in the traffic impact study:

- Fuller Avenue / Robert Street East;
- Fuller Avenue / Sandy Bay Road;
- Fuller Avenue / Broad Street; and
- Sandy Bay Road / Site Access.

Figure 1 – Proposed Site Location and Study Area

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site accesses and on the surrounding roadway network. The study analysis includes the following tasks:

- Consult with the Town to address any traffic-related issues or concerns they have with the proposed development;
- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year (without the proposed development) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete LOS analysis of horizon year (with the proposed development) traffic conditions and identify additional operational deficiencies;
- Identify improvement options to address operational deficiencies;
- Review the proposed intersection spacing;

- Review the available sight distance at the proposed site access driveway; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

Traffic scenarios for the existing year, ultimate buildout horizon year (2025), 5-year post-buildout horizon year (2030) and 10-year post-buildout horizon year (2035) were selected for analysis of traffic operations in the study area. The weekday morning [AM] and weekday afternoon [PM] peak hours have been selected as the analysis periods for this study.

2 Information Gathering

2.1 Street and Intersection Characteristics

Fuller Avenue is designated as a Major Road within the Town's Official Plan, having a two-lane, rural cross-section through the study area. Fuller Avenue has bike lanes on both sides of the road and a posted speed limit of 60km/h. Fuller Avenue is under the jurisdiction of the Town.

Robert Street East is designated as a Major Road within the Town's Official Plan, having a two-lane, rural cross-section through the study area. Robert Street has a posted speed limit of 50km/h and is under the jurisdiction of the Town.

Sandy Bay Road is designated as a Local Road within the Town's Official Plan, having a two-lane, rural cross-section through the study area. Sandy Bay Road has a posted speed limit of 60km/h and is under the jurisdiction of the Town.

Broad Street is designated as a Local Road within the Town's Official Plan, having a two-lane, rural cross-section through the study area. Broad Street has an unposted (assumed) speed limit of 50km/h and is under the jurisdiction of the Town.

The existing intersection spacing and lane configuration within the study area is illustrated in Figure 2.

Figure 2 – Existing Intersection Spacing and Lane Configuration within Study Area

2.2 Local Transportation Infrastructure Improvements

Based on our discussions with Town Staff, the detailed design for the improvements to the Robert Street East / Fuller Avenue intersection is nearing completion, with construction scheduled for 2024. The improvements were based upon the recommendations made in the *1145 Fuller Avenue Traffic Impact Study* [1145 Fuller TIS] completed by JD Engineering on November 22nd, 2018, noted below:

Robert Street East / Fuller Avenue

- Signalization of intersection
- Northbound left turn auxiliary lane;
 - (45 metre storage length and 55 metre taper length)
- Southbound right turn auxiliary lane;
- (30 metre storage length and 60 metre taper length)
- Eastbound right turn auxiliary lane.
 - (30 metre storage length and 30 metre taper length)

For the purpose of this study, the above improvements have been applied to the 2025 horizon year (and beyond). Signal timing used in the 1145 Fuller Avenue TIS has applied.

2.3 Transit Access

The Midland Penetanguishene Transit [MPTS] provides one bus routes within the study area; the Penetanguishene route provides service to various points of interest within the Town, travelling along Robert Street West, Broad Street, and Fuller Avenue, adjacent to the study area. This bus operates between 06:25 – 17:25 on weekdays and 08:25 – 16:25 on Saturdays with service every 60 minutes. There is no bus service on Sundays or Holidays. This bus route provides a "flag on" service where passengers are not required to be at a bus stop and can flag down the bus along its route to get on the bus. The closest bus stop is located at the southwest corner of the Church Steet / Broad Street intersection.

2.4 **Development Growth**

In review of the Town's development information and through discussions with Town planning staff, the following developments have been noted for consideration with respect to impacts on the local traffic volumes / infrastructure capacity:

- 1145 Fuller Avenue 0.56 acre commercial block, 102 single detached units, 86 townhouse units and 0.56 acre multi-density block;
- 40 Thompsons Road East 36 residential units;
- St. Andrews Village 126 single detached units, 47 townhouse units and approximately 30 medium density units;
- 51 Dunlop Street final land use not known;
- 123 Robert Street East 33 townhouse units;
- 200 Fox Street marina, 22 townhouse units, 28 single detached units and 12 medium density units;
- 77 Fox Street 56 rental units;
- 221 Fox Street 88 townhouse units;
- Phase 4 Harbour Pointe Subdivision 31 single detached units;
- 15 Sheffcote Street 1,813 ft² commercial spaces and two residential units; and.
- 177 Robert Street East 44,202 ft² industrial facility.

Figure 3 illustrates the location of the above developments in relation to the subject site.

Figure 3 – Adjacent Development Location

In review of the adjacent development locations and local area traffic routes, it is evident that traffic volumes generated from a number of the proposed developments will not traverse the study intersections. In general, motorists destined to, or originating from developments located to the west and south of the Subject Site, are likely to utilize the Main Street and Fox Street as primary travel routes. Consequently, only the adjacent developments that will generate traffic through the study intersection have been considered in the proceeding analyses.

 Table 1 summarizes the adjacent developments details.

No.	Development	Development Stats	Traffic Generation Reference	Build-out Horizon
1	1145 Fuller Ave	0.56-acre commercial block, 102 single detached units, 86 townhouse units and 0.56-acre multi-density block;	1145 Fuller TIS	2025
2	15 Sheffcote St	15 Sheffcote St 1,813 ft ² commercial spaces and two residential units		2025
3	177 Robert St E	44,202 ft ² industrial facility	1145 Fuller TIS	2025
4	123 Robert St E	33 Townhouse units	ITE Rates	2025

Table 1 – Adjacent Development Summary

2.4.1 **Development Growth Traffic Generation**

Traffic volumes generated by the 1145 Fuller Avenue, 15 Sheffcote Street and 177 Robert Street East developments have been determined based on the 1145 Fuller TIS (Excerpts provided in **Appendix B**). For the remaining 123 Robert Street East development, traffic volumes have been calculated based on the data provided in the Institute of Transportation Engineers [ITE] Trip Generation Manual (11th Edition) [ITE Trip Generation Manual].

The following ITE land uses have been applied to estimate the traffic from the adjacent development:

• ITE land use 220 (Multifamily Housing (Low-Rise)) – General Urban / Suburban Setting.

The AM and PM peak hour traffic generation for the adjacent developments do not exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

The traffic rates used to estimate trip generation of the adjacent development are illustrated below in Error! Reference source not found..

Table 2 –	ITE Traffic	Generation	Rates &	Equations
-----------	-------------	------------	---------	-----------

Land Use	Trin Basis	A	VI Peak Ho	our	PM/EVE Peak Hour		
Land Use		IN	OUT	TOTAL	IN	OUT	TOTAL
Multi-Family Housing (Low-Rise) ITE Land Use: 220	rate (units)	0.1	0.3	0.4	0.32	0.19	0.51

The estimated trip generation of the adjacent developments is illustrated below in Table 3.

Table 3 – Estimated Traffic Generation – Adjacent Developments

Development		Size	AM	/I Peak He	our	PM Peak Hour		
Development	Land Use	5120	IN	OUT	TOTAL	IN	OUT	TOTAL
123 Robert St E	Townhouse units	33 units	3	11	14	11	6	17

As noted in **Table 1**, all development has been assumed to be built-out by the 2025 horizon year.

2.4.2 Adjacent Development Traffic Volume Assignment

The traffic assignment for the adjacent development traffic have been established based on the respective background traffic studies noted in **Table 1**.

For the adjacent development that did not have a traffic study (123 Robert Street E), traffic volumes have been distributed to the study area road network based on the traffic distribution developed in Section 4.4, in context with the location of the development area.

The assignment of the adjacent development volumes through the study area road network is illustrated in **Figure 4** through Error! Reference source not found..

2.5 **Background Traffic Growth**

Based on discussions with Town staff, and in order to remain consistent with other traffic studies completed in the area, a background growth rate of 2% has been applied to the study area.

2.6 **Traffic Counts**

Detailed turning movement traffic and pedestrian counts were commissioned by JD Engineering at the study intersections. **Table 4** summarizes the traffic count data collection information.

Intersection (N-S Street / E-W Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
Fuller Avenue / Sandy Bay Road	Tuesday January 10, 2023	07:15 – 08:15	16:00 – 17:00	JD Eng.*
Fuller Avenue / Broad Street	Tuesday January 10, 2023	07:15 – 08:15	16:00 – 17:00	JD Eng.*
Fuller Avenue / Robert Street East	Tuesday January 10, 2023	07:30 - 08:30	16:00 – 17:00	JD Eng.*

Table 4 – Traffic Count Data

*Counts were completed by Accu-Traffic Inc. on behalf of JD Engineering.

Detailed traffic count data can be found in **Appendix C**.

2.7 Existing Traffic Volumes

The 2023 existing AM, and PM peak hour traffic volumes in the study area are illustrated in Figure 9.

2.8 Horizon Year Traffic Volumes

The background (2025, 2030 and 2035) horizon year traffic volumes are illustrated in Error! Reference source not found. through **Figure 12**. The background volumes are based on the existing (2023) traffic volumes, adjusted to reflect the annual background growth rate of 2%, in addition to the noted adjacent development traffic volumes (outlined in Section 2.4).

3 Intersection Operation without Proposed Development

3.1 Introduction

Existing and background horizon operational conditions were established to determine how the street network within the study area is currently functioning without the proposed development. This provides a base case scenario to compare with future development scenarios. Traffic operations within the study area were evaluated using the existing and future background traffic volumes with the existing road configuration and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 11, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analyzing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 11 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign-controlled intersections are shown in **Table 5**. A description of traffic performance characteristics is included for each LOS.

		Control Delay (seconds per vehicle)					
LOS	LOS Description	LOS Description Signalized Intersections					
А	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0				
В	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0				
С	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0				
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0				
Е	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0				
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0				

Table 5 – Level of Service Criteria for Intersections

3.2 Existing Intersection Operation

The results of the LOS analysis under existing (2023) traffic volumes during the AM and PM peak hours can be found below in Error! Reference source not found.. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix D**.

	Weekday AM Peak Hour				Weekday PM Peak Hour					
Location				95% Qu	95% Queue (m)		Delaw (a)	1.00	95% Queue (m)	
	V/C	Delay (s)	LUS	Storage	Model	V/C	Delay (s)	LOS	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	1.5	А	-	-	-	1.5	А	-	-
EB	0.08	9.1	А	-	2	0.08	11.9	В	-	2
Fuller Avenue / Sandy Bay Road (unsignalized)	-	1.5	А	-	-	-	1.1	А	-	-
WB	0.11	11.9	В	-	3	0.07	11.6	В	-	2
Fuller Avenue / Robert Street East (unsignalized)	-	8.7	A	-	-	-	5.9	A	-	-
EB	0.59	22.7	С	-	31	0.45	18.2	С	-	19

Table 6 – Existing (2023) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the Ontario Ministry of Transportation Design Supplement for TAC Geometric Design Guide for Canadian Roads June 2017 [MTO DS]. According to the above-noted criteria, a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No infrastructure improvements are recommended within the study area.

3.3 Background (2025) Intersection Operation

The results of the LOS analysis under background (2025) traffic volumes during the AM and PM peak hour can be found below in **Table 7**. Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Detailed output of the Synchro analysis can be found in **Appendix E**.

		Weeko	lay AM Pe	ak Hour			Weekd	lay PM Pe	ak Hour	
Location (N-S Street / E-W Street)	NIC		1.00	95% Qu	eue (m)	NIC		1.00	95% QI	ueue (m)
	V/C	Delay (S)	105	Storage	Model	V/C	Delay (s)	105	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	1.9	A	-	-	-	1.8	A	-	-
EB	0.10	9.2	Α	-	3	0.10	12.2	В	-	3
Fuller Avenue / Sandy Bay Road (unsignalized)	-	1.5	A	-	-	-	1.1	A	-	-
WB	0.12	12.1	В	-	3	0.08	11.8	В	-	2
Fuller Avenue / Robert Street East (signalized)	0.33	14.6	В	-	-	0.35	13.9	В	_	-
EBL	0.60	35.3	D	-	33	0.53	33.9	С	-	39
EBR	0.11	29.5	С	30	4	0.11	30.0	С	30	17
NBL	0.21	4.7	A	45	14	0.24	4.5	A	45	16
NBT	0.24	5.2	Α	-	26	0.14	4.2	Α	-	17
SBT	0.21	10.2	В	-	34	0.32	10.7	В	-	37
SBR	0.09	9.3	Α	30	9	0.18	9.5	Α	30	4

Table 7 – Background (2025) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

3.4 Background (2030) Intersection Operation

The results of the LOS analysis under background (2030) traffic volumes during the AM and PM peak hour can be found below in **Table 7**. Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Detailed output of the Synchro analysis can be found in **Appendix E**.

		Weeko	lay AM Pe	ak Hour			Weekd	lay PM Pe	ak Hour	
Location			1.00	95% Qu	eue (m)	NIC		1.00	95% QI	ueue (m)
	V/C	Delay (S)	105	Storage	Model	V/C	Delay (s)	105	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	1.9	А	-	-	-	1.9	А	-	-
EB	0.11	9.4	A	-	3	0.13	12.9	В	-	3
Fuller Avenue / Sandy Bay Road (unsignalized)	-	1.6	A	-	-	-	1.1	A	-	_
WB	0.14	12.7	В	-	4	0.09	12.4	В	-	2
Fuller Avenue / Robert Street East (signalized)	0.36	15.0	В	-	-	0.38	14.2	В	-	-
EBL	0.62	36.0	D	-	35	0.55	34.2	С	-	41
EBR	0.12	29.4	С	30	4	0.12	30.0	С	30	17
NBL	0.24	4.9	A	45	16	0.28	4.8	A	45	18
NBT	0.26	5.6	Α	-	30	0.15	4.4	Α	-	19
SBT	0.23	10.8	В	-	38	0.35	11.3	В	-	41
SBR	0.10	9.8	Α	30	9	0.21	10.0	Α	30	6

Table 8 – Background (2030) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

3.5 Background (2035) Intersection Operation

The results of the LOS analysis under background (2035) traffic volumes during the AM and PM peak hour can be found below in **Table 7**. Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Detailed output of the Synchro analysis can be found in **Appendix E**.

		Weekd	lay AM Pe	ak Hour			Weekd	lay PM Pe	ak Hour	
Location			1.00	95% Qu	eue (m)	NIC		1.00	95% Qı	ueue (m)
	V/C	Delay (s)	103	Storage	Model	V/C	Delay (s)	103	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	1.9	А	-	-	-	2.0	А	-	-
EB	0.12	9.5	A	-	3	0.14	13.7	В	-	4.0
Fuller Avenue / Sandy Bay Road (unsignalized)	-	1.8	A	-	-	-	1.2	A	-	-
WB	0.16	13.5	В	-	4	0.11	13.0	В	-	3
Fuller Avenue / Robert Street East (signalized)	0.39	15.5	В	-	-	0.41	14.6	В	-	-
EBL	0.65	36.9	D	-	38	0.56	34.5	С	-	43
EBR	0.13	29.3	С	30	4	0.13	29.9	С	30	18
NBL	0.26	5.2	A	45	18	0.32	5.2	A	45	20
NBT	0.29	6.0	A	-	34	0.16	4.5	A	-	21
SBT	0.25	11.5	В	-	43	0.38	12.1	В	-	47
SBR	0.10	10.3	В	30	10	0.24	10.6	В	30	9

Table 9 – Background (2035) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 4.2.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the existing auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

4 Proposed Development Traffic Generation and Assignment

4.1 **Traffic Generation**

The traffic generation for proposed development has been estimated based the type of land use, development size and data provided in the ITE Trip Generation Manual. The following ITE land use has been applied to estimate the traffic for the proposed development:

- ITE land use 210 (Single-Family Detached);
- ITE land use 220 (Multifamily Housing (Low-Rise)).

The utilized traffic rates and estimated trip generation of the proposed development is illustrated below in **Table 10 and Table 11**.

L and Lise	Trin Basis	A	/I Peak H	lour	PM Peak Hour			
Land OSC	The Basis	IN	OUT	TOTAL	IN	OUT	TOTAL	
Single-Family Detached	equation (units)	equation (units) $Ln(T) = 0.91 Ln(X) + 0.12 Ln(T) = 0.94 Ln(X)$						
ITE Land Use: 210	distribution	25%	75%	100%	63%	M Peak I OUT = 0.94 Ln 37% 0.19	100%	
Multifamily Housing (Low-Rise) ITE Land Use: 220	rate (units)	0.10	0.30	0.40	0.32	0.19	0.51	

Table 10 – ITE Traffic Generation Trip Rates & Fitted Curve Equations (Subject Site)

Table 11 – Estimated Trip Generation of the Proposed Development

Land Use	Units	A	/I Peak H	lour	PM Peak Hour			
	onits	IN	OUT	TOTAL	IN	OUT	TOTAL	
Single-Family Detached ITE Land Use: 210	31	6	20	26	21	12	33	
Multifamily Housing (Low-Rise) ITE Land Use: 220	33	3	11	14	11	6	17	
Total Trips	64 units	9	31	40	32	18	50	

To be conservative, the 4 semi-detached units have been counted as single-detached units to give a total of 31 single-detached units for the traffic generation. Additionally, no transportation modal split reduction has been applied to the above-noted traffic generation calculation.

4.2 **Traffic Assignment**

For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed.

The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. The distribution of traffic has been calculated based on the 2016 Transportation Tomorrow Survey [TTS] data for traffic zone 8573 retrieved using the TTS Internet Data Retrieval System [IDRS] (output

attached as **Appendix F**). TTS data provides historical origin and destination work trip percentages for specific areas within the County and the Greater Toronto and Hamilton Area [GTHA].

Traffic distribution for the trips generated by the proposed development is expected to generally follow commuter travel patterns. Our analysis is based on egress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming drivers will select their route primarily based on travel time.

The distribution of trips is illustrated in Error! Reference source not found. using the methodology outlined above.

Travel Direction (to / from)	Percent of Total Traffic Generation
West via Broad Street	5%
West via Robert Street West	31%
South via Fuller Avenue	64%
TOTAL	100%

Table 12 – Proposed Development Traffic Distribution

The site traffic assignment for buildout of the proposed developments for the AM and PM peak hour is illustrated in **Figure 13**.

4.3 Total Horizon Year Traffic Volumes with the Proposed Development

For the total (2025, 2030 and 2035) horizon year traffic volumes, the proposed development traffic was added to the background (2025, 2030 and 2035) traffic volumes. The resulting total (2025, 2030 and 2035) horizon year traffic volume for the AM and PM peak hour are illustrated in Error! Reference source not found. through **Figure 16**.

5 Intersection Operation with Proposed Development

5.1 **Total (2025) Intersection Operation**

The results of the LOS analysis under total (2025) traffic volumes during the AM and PM peak hour can be found below in **Table 13** Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Stop control has been assumed at the Site Access egress movement. Detailed output of the Synchro analysis can be found in **Appendix G**.

		Weeko	lay AM Pe	ak Hour			Weeko	lay PM Pe	ak Hour	
Location			1.00	95% Qu	eue (m)			1.00	95% Queue (m)	
	V/C	Delay (S)	105	Storage	Model	V/C	Delay (S)	105	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	1.8	А	-	-	-	1.7	А	-	-
EB	0.11	9.4	А	-	3	0.11	12.7	В	-	4.0
Site Access / Sandy Bay Road (unsignalized)	-	2.6	А	-	-	-	1.3	А	-	-
NB	0.04	9.0	А	-	1	0.02	9.1	А	-	3
Fuller Avenue / Sandy Bay Road (unsignalized)	-	2.3	А	-	-	-	1.8	А	-	-
WB	0.19	12.9	В	-	6	0.15	12.7	В	-	4
Fuller Avenue / Robert Street East (signalized)	0.34	14.7	В	-	-	0.37	14.1	В	-	-
EBL	0.60	35.4	D	-	34	0.55	34.5	С	-	42
EBR	0.11	29.4	С	30	4	0.11	29.9	С	30	16
NBL	0.21	4.7	А	45	14	0.25	4.7	А	45	16
NBT	0.25	5.4	А	-	27	0.15	4.5	А	-	20
SBT	0.23	10.6	В	-	38	0.33	11.1	В	-	40
SBR	0.10	9.5	А	30	9	0.19	9.8	А	30	5

Table 13 – Total (2025) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

5.2 **Total (2030) Intersection Operation**

The results of the LOS analysis under total (2030) traffic volumes during the AM and PM peak hour can be found below in **Table 14**. Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Stop control has been assumed at the Site Access egress movement. Detailed output of the Synchro analysis can be found in **Appendix G**.

		Weeko	lay AM Pe	ak Hour		Weekday PM Peak Hour					
Location		Deley (a)	1.00	95% Qu	ieue (m)	N//C		1.00	95% Q	ueue (m)	
	v/C	Delay (S)	105	Storage	Model	V/C	Delay (S)	105	Storage	Model	
Fuller Avenue / Broad Street (unsignalized)	-	1.8	А	-	-	-	1.8	А	-	-	
EB	0.12	9.6	А	-	3	0.14	13.6	В	-	4	
Site Access / Sandy Bay Road (unsignalized)	-	2.5	А	-	-	-	1.3	А	-	-	
NB	0.04	9.1	А	-	1	0.02	9.1	А	-	1	
Fuller Avenue / Sandy Bay Road (unsignalized)	-	2.4	А	-	-	-	1.8	А	-	-	
WB	0.21	13.6	В	-	6	0.17	13.4	В	-	5	
Fuller Avenue / Robert Street East (signalized)	0.36	15.0	В	-	-	0.40	14.4	В	-	-	
EBL	0.63	36.2	D	-	36	0.57	34.5	С	-	44	
EBR	0.12	29.3	С	30	4	0.12	29.8	С	30	17	
NBL	0.24	5.0	А	45	16	0.29	5.0	А	45	18	
NBT	0.27	5.7	А	-	31	0.16	4.6	А	-	21	
SBT	0.25	11.1	В	-	42	0.37	11.8	В	-	44	
SBR	0.10	9.9	А	30	9	0.22	10.4	В	30	7	

Table 14 – Total (2030) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

5.3 Total (2035) Intersection Operation

The results of the LOS analysis under total (2035) traffic volumes during the AM and PM peak hour can be found below in **Table 15**. Existing intersection geometry has been utilized for this scenario and traffic control have been utilized for this scenario along with the improvements to the Robert Street East / Fuller Avenue intersection, as noted in Section 2.2. Stop control has been assumed at the Site Access egress movement. Detailed output of the Synchro analysis can be found in **Appendix G**.

		Weeko	lay AM Pe	ak Hour			Weeko	lay PM Pe	ak Hour	
Location (N-S Street / E-W/ Street)				95% Qu	eue (m)				95% Queue (m)	
	V/C	Delay (S)	103	Storage	Model	V/C	Delay (S)	LUS	Storage	Model
Fuller Avenue / Broad Street (unsignalized)	-	4.6	А	-	-	-	1.9	А	-	-
EB	0.13	9.6	А	-	4	0.16	14.5	В	-	4
Site Access / Sandy Bay Road (unsignalized)	-	2.4	А	-	-	-	1.2	А	-	-
NB	0.04	9.1	А	-	1	0.02	9.2	А	-	1
Fuller Avenue / Sandy Bay Road (unsignalized)	-	2.6	А	-	-	-	1.9	А	-	-
WB	0.25	14.6	В	-	8	0.19	14.2	В	-	6
Fuller Avenue / Robert Street East (signalized)	0.40	15.5	В	-	-	0.40	14.4	В	-	-
EBL	0.66	37.3	D	-	38	0.59	35.0	D	-	46
EBR	0.13	29.2	С	30	4	0.13	29.8	С	30	18
NBL	0.27	6.1	А	45	18	0.33	5.4	А	45	21
NBT	0.30	5.7	Α	-	35	0.18	4.7	А	-	23
SBT	0.28	11.9	В	-	47	0.40	12.5	В	-	50
SBR	0.11	10.4	В	30	10	0.25	11.0	В	30	10

Table 15 - Total (2035) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design limits noted in Section 3.1.

The anticipated 95th percentile queue for the southbound through movement at the Fuller Avenue / Robert Street intersection extends marginally beyond the southbound right lane storage length during both the AM and PM peak hour. However, the southbound right turn movement can be accommodated within the southbound right turn taper length. Consequently, no change to the design is required.

The anticipated 95th percentile queues for all other movements can be accommodated by the auxiliary lane storage lengths.

An analysis was completed for left turn movements at the study area unsignalized intersections, based on the criteria outlined in Appendix 9A of the MTO DS. According to the above-noted criteria a left turn lane is not warranted (results are provided in **Appendix H**).

A review of the need for an additional auxiliary right turn lane at the study area unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, an auxiliary right turn lane is not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the study area unsignalized intersections (results are provided in **Appendix I**).

No additional improvements are recommended within the study area.

5.4 Site Access

The Site Access will operate efficiently as a full-movement access, with one-way stop control for the egress movements. A single ingress and egress lane will provide the necessary capacity to service the proposed development.

The proposed spacing between the Site Access and Fuller Avenue to the to the west and Concession Road to the east is greater than the minimum intersection spacing requirements as identified in the Transportation Association of Canada Design Guide for Canadian Roads (2017) [TAC Guidelines] – Figure 8.8.2 (Suggested Minimum Corner Clearance to Accesses at Major Intersections) – 35 meters for arterial roads for unsignalized conditions.

5.5 Sight Distance Review

A review of the available sight distances for the proposed Site Access was completed as part of this analysis.

The sight distance east of the Site Access was measured at greater than 200 metres, satisfying both the minimum sight stopping and intersection sight distance requirements as identified in the TAC Guidelines for a design speed of 80km/h (130 and 170 meters, respectively).

The sight distance west of the Site Access was measured at approximately 150 metres, satisfying both the minimum sight stopping and intersection sight distance requirements as identified in the TAC Guidelines for a design speed of 80km/h (130 and 145 meters, respectively).

As such, there are no issue with the sight distance available for the proposed West Access.

6 Summary

1000239074 Ontario Inc. retained **JD Engineering** to prepare this traffic impact study in support of the proposed residential development in the Town of Penetanguishene. The proposed Draft Plan of Subdivision is shown in **Appendix A**. This chapter summarizes the conclusions and recommendations from the study.

- 1. The proposed development is expected to generate a total of 40 AM and 50 PM peak hour trips.
- 2. Detailed intersection counts were commissioned at the study intersections by JD Engineering.
- 3. An intersection operation analysis was completed at the study area intersections, using the existing and background (2025, 2030 and 2035) traffic volumes, with consideration for the projected adjacent development traffic growth and without the proposed development traffic.

This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development.

- 4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
- 5. An intersection operation analysis was completed under total (2025, 2030 and 2035) traffic volumes with the proposed development operational at the study area intersections. No improvements are recommended within the study area.
- 6. The proposed Site Accesses will operate efficiently with one-way stop control for egress movements. A single lane for ingress and egress movements will provide the necessary capacity to convey the traffic volume generated by the proposed development.
- 7. The sight distance available for the proposed West Access is suitable for the intended use.
- 8. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Figure 6: Adjacent Development Traffic Volumes – 15 Sheffcote Street

Figure 7: Adjacent Development Traffic Volumes - 177 Robert Street East

Figure 8: Adjacent Development Traffic Volumes – Total (2025)

Figure 9 – Existing (2022) Traffic Volumes

Figure 10 – Background (2025) Traffic Volumes

Figure 11 – Background (2030) Traffic Volumes

Figure 13 – Site Traffic Assignment

Appendix A – Site Plan

TIAL T	WO (R2) ZONE: SIN	GLE DETACHED
ns	Required	Provided
/elling .2.1)	Permitted	Permitted
tage	15.00m	12.02m
	460.00m ²	351.59m ²
ırd	6.00m	> = 6.00m
Side	1.20m	> = 1.20m
Side	4.50m	> = 4.50m
rd	7.50m	> = 7.50m
to	6.00m	> = 6.00m
	11.00m	< = 11.00m
erage	35%	> = 35%
king)	2 parking spaces / dwelling unit	2 parking spaces / dwelling unit
	TWO (R2) ZONE: SEI	MI - DETACHED
ns	Required	Provided
velling .2.1)	Permitted	Permitted
tage	11.00m / unit	11.00m
	330.00m ² / unit	378.80m ²
ird	6.00m	> = 6.00m
Side	1.20m	> = 1.20m
Side	4.50m	> = 4.50m
rd	7.50m	> = 7.50m
to	6.00m	> = 6.00m
	11.00m	< = 11.00m
erage	35%	> = 35%
kina	2 norking analog /	2 norking analog /

ENTIAL	THREE (R3) ZONE:	TOWNHOSUE
ns	Required	Provided
elling 2.1)	Not Permitted	Permitted
tage	7.50m	7.50m
	220.00m ²	213.97m ²
rd	6.00m / unit	> = 6.00m
Side	0.00m	0.00m
Side	4.50m	> = 4.50m
rd	7.50m	> = 7.50m
to	6.00m	> = 6.00m
	11.00m	< = 11.00m
erage	35%	> = 35%
king)	2 parking spaces / dwelling unit	2 parking spaces / dwelling unit

road St. road St. Camb	SURVEY d Plan No. 69 of Tay) shene, be 0 40 855ha)	
road St. road St. Cambridge Ca	SUBJI SUBJI	
road St. road St. Camb	SUBJI SUBJI THE TO SUBJICTIONS	
road St. road St. Cambridge Ca	SUBJI SUBJI SUBJI SUBJI SUBMIT THIS DRA	
Cambridge Cambri	SUBJI THE TO THE TO	
Cambridge Comparison of the second state of th	And a solutions	St. Andrews
Camb Camb Camb Camb Camb Camb Camb Camb	PLAN Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha)	
Cambo Cambo	PLAN Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha)	
Cambo Cambo	PLAN PLAN Survey d Plan No. 69 of Tay) shene, be 0 40 855ha)	
Camb Camb Camb Camb Camb Camb Camb Camb	PLAN Survey d Plan No. 69 of Tay) shene, be 0 40 855ha)	
RAFT F SUBDIV Topographic Plan of S rt of Lot B1, Registered (Geographic Township Town of Penetanguis County of Simco Scale 20 3 S (38,555.09m ² / 3.	PLAN Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha)	
S (38,555.09m ² / 3.	PLAN VISION Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha)	
SUBDIV Topographic Plan of 3 rt of Lot B1, Registered (Geographic Township Town of Penetanguis County of Simco Scale 20 3 S (38,555.09m ² / 3. NOVATIVE PLANN JBDIVISION AND S OVAL.	VISION Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha)	
Topographic Plan of 3 rt of Lot B1, Registered (Geographic Township Town of Penetanguis County of Simco Scale 20 3 S (38,555.09m ² / 3. NOVATIVE PLANN JBDIVISION AND S OVAL.	Survey d Plan No. 69 o of Tay) shene, be 0 40 855ha) NING SOLUTIONS SUBMIT THIS DRA	50m
rt of Lot B1, Registered (Geographic Township Town of Penetanguis County of Simco Scale 20 3 S (38,555.09m ² / 3. NOVATIVE PLANN JBDIVISION AND S OVAL.	d Plan No. 69 o of Tay) shene, be 0 40 855ha) NING SOLUTIONS SUBMIT THIS DRA	
Town of Penetanguis County of Simco Scale 20 3 S (38,555.09m ² / 3.	shene, be 0 40 855ha) NING SOLUTIONS SUBMIT THIS DRA	
S (38,555.09m ² / 3.	0 40 855ha) NING SOLUTIONS	
Scale 20 3 S (38,555.09m ² / 3. NOVATIVE PLANN JBDIVISION AND S OVAL.	0 40 855ha) NING SOLUTIONS SUBMIT THIS DRA	
20 3 S (38,555.09m ² / 3. NOVATIVE PLANN JBDIVISION AND S OVAL.	0 40 855ha) NING SOLUTIONS SUBMIT THIS DRA	
S (38,555.09m ² / 3. INOVATIVE PLANN JBDIVISION AND S OVAL.	855ha) NING SOLUTIONS SUBMIT THIS DRA	
S (38,555.09m ² / 3. INOVATIVE PLANN JBDIVISION AND S OVAL.	855ha) NING SOLUTIONS SUBMIT THIS DRA	
S (38,555.09m ² / 3. INOVATIVE PLANN JBDIVISION AND S OVAL.	855ha) IING SOLUTIONS SUBMIT THIS DRA	
INOVATIVE PLANN JBDIVISION AND S OVAL.	NING SOLUTIONS	
INOVATIVE PLANN JBDIVISION AND S OVAL.	NING SOLUTIONS	
INOVATIVE PLANN JBDIVISION AND S OVAL.	NING SOLUTIONS	
OVAL.	SUBMIT THIS DRA	
		AFT PLAN OF
YORK	CAPITAL PROPE	RTIES INC.
<u>TE</u>		
UNDARIES OF THE	E LAND TO BE SU	JBDIVIDED AI
J. EVE	N, O.L.S.	
ON REQUIRED UN	IDER SECTION 5	1(17) OF THE
a) SHOWN O		
h) MUNICIPA	L WATER	
i) SAND, SIL i) SHOWN O	T GLACIAL TILL N PLAN	
k) MUNICIPA	L WATER & SEW	AGE
I) NONE		
LAND USE STATI T No. / BLK. No.	UNITS	AREA (ha
1 - 20, 23 - 29	27	1.341
21 - 22	4	0.226
20. 05	00	
30 - 35	33	0.891
36 37		0.018
51		0.403
37	64	3.855
37	64	3.855
	ATE UNDARIES OF THE DADJACENT LANE J. EVE ON REQUIRED UN () SHOWN O () MUNICIPA () SAND, SIL () SAND, SIL () SHOWN O () MUNICIPA () NONE () NONE () NONE () NONE () ADJACENT LANE () ADJACENT LANE	JINDARIES OF THE LAND TO BE SIDDADJACENT LANDS ARE ACCURATION OF ADJACENT LANDS ARE ACCURATION OF JUNE J. EVEN, O.L.S. ON REQUIRED UNDER SECTION 5 g) SHOWN ON PLAN h) MUNICIPAL WATER i) SAND, SILT GLACIAL TILL j) SHOWN ON PLAN k) MUNICIPAL WATER & SEW l) NONE LAND USE STATISTICS T No. / BLK. No. UNITS 1 - 20, 23 - 29 27 21 - 22 4 30 - 35 33 36 37 37 64

23 - 1314

Checked:

J.A. / K.B.

File:

Appendix B – Adjacent Development Excerpts

Appendix C – Traffic Count Data

Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 7:30:00 To: 10:00:00 To: 8:30:00
Municipality:PenetanguisheneSite #:2300200001Intersection:Fuller Ave & Robert St ETFR File #:1Count date:10-Jan-23	Weather conditions: Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: Fuller Ave runs N/S
North Leg Total: 486Heavys 224North Entering: 195Trucks 21North Peds:0Cars59129Peds Cross: \blacktriangleright Totals63132Heavys Trucks CarsTotals \checkmark \checkmark Fu63175184 \checkmark \checkmark Heavys Trucks CarsTotals \checkmark \checkmark \checkmark 018990 \checkmark \checkmark 019798 \checkmark \checkmark 019798 \checkmark Fuller Ave	Heavys 2 Trucks 6 Cars $\frac{283}{291}$ uller Ave V = E
Peds Cross:XCars226CarsWest Peds:0Trucks2TrucksWest Entering:188Heavys2HeavysWest Leg Total:372Totals230Totals	Ins 116 194 310 Peds Cross: ► ks 1 5 6 South Peds: 0 ys 4 2 6 South Entering: 322 alls 121 201 South Leg Total: 552
Comn	nents

Afternoon Peak Diagram	Specified Period One Hour Peak From: 16:00:00 From: 16:00:00 To: 19:00:00 To: 17:00:00
Municipality:PenetanguisheneSite #:230020001Intersection:Fuller Ave & Robert St ETFR File #:1Count date:10-Jan-23	Weather conditions: Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: Fuller Ave runs N/S
North Leg Total: 490 Heavys 0 2 2 North Entering: 321 Trucks 1 0 1 North Peds: 0 Cars 139 179 31 Peds Cross: ► Totals 140 181 Fu Heavys Trucks Cars Totals Image: Cars Totals 0 Fu 0 4 291 295	Heavys 1 Trucks 2 8 Cars <u>166</u> Totals 169
Robert St E Heavys Trucks Cars Totals 0 1 61 62	E
1 2 141 144 Image: Constraint of the second	句 ①
Peds Cross:XCars320CarsWest Peds:0Trucks2TrucksWest Entering:206Heavys3HeavysWest Leg Total:501Totals325Totals	rs 152 105 257 Peds Cross: ► ks 3 1 4 South Peds: 0 /s 0 1 1 South Entering: 262 /ls 155 107 South Leg Total: 587
Comn	nents

Morning Peak Diagram	Specified PeriodOne Hour PeakFrom: 7:00:00From: 7:15:00
	To: 10:00:00 To: 8:15:00
Municipality:PenetanguisheneSite #:2300200003Intersection:Fuller Ave & Broad StTFR File #:1Count date:10-Jan-23	Weather conditions: Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: Fuller Ave runs N/S
North Leg Total: 329Heavys011North Entering:80Trucks011North Peds:0Cars47478Peds Cross:ITotals476	Heavys 2 Trucks 5 Cars 242 Totals 249
Heavys Trucks Cars Totals	Iller Ave
Broad St W	E E
	5
1 0 36 37 Fuller Ave	句 ①
Peds Cross:XCars110CarsWest Peds:0Trucks1TrucksWest Entering:38Heavys2HeavyWest Leg Total:53Totals113Totals	Ins 10 241 251 Peds Cross: ► ks 0 5 5 South Peds: 0 ys 1 2 3 South Entering: 259 ills 11 248 South Leg Total: 372
Comn	nents

Afternoon Peak Diagram	Specified Period One Hour Peak From: 16:00:00 From: 16:00:00 To: 19:00:00 To: 17:00:00
Municipality:PenetanguisheneSite #:230020003Intersection:Fuller Ave & Broad StTFR File #:1Count date:10-Jan-23	Weather conditions: Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: Fuller Ave runs N/S
North Leg Total:319Heavys011North Entering:226Trucks000North Peds:0Cars721822Peds Cross:Image: Corr state of the sta	5 Heavys 0 Trucks 1 Cars 92 Totals 93
Heavys Trucks Cars Totals	
Broad St Heavys Trucks Cars Totals 0 0 11 11	E
1 0 19 20 1 0 30 Fuller Ave	句 ①
Peds Cross:XCars237CarsWest Peds:1Trucks0TrucksWest Entering:31Heavys2HeavysWest Leg Total:69Totals239Totals	rs 31 81 112 Peds Cross: ► ks 0 1 1 South Peds: 0 /s 0 0 South Entering: 113 ls 31 82 South Leg Total: 352
Comn	nents

Appendix D – Synchro Analysis Output – Existing Traffic Volumes

	٠	7	1	t	Ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			र्स	ţ,			
Traffic Volume (veh/h)	1	37	11	248	76	4		
Future Volume (Veh/h)	1	37	11	248	76	4		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91		
Hourly flow rate (vph)	2	74	17	388	84	4		
Pedestrians	1							
Lane Width (m)	3.6							
Walking Speed (m/s)	1.2							
Percent Blockage	0							
Right turn flare (veh)								
Median type				None	None			
Median storage veh)				,				
Upstream signal (m)								
pX. platoon unblocked								
vC. conflicting volume	509	87	89					
vC1, stage 1 conf vol		•						
vC2, stage 2 conf vol								
vCu, unblocked vol	509	87	89					
tC. single (s)	6.4	6.2	4.2					
tC 2 stage (s)	0.1	0.2						
tE(s)	3.5	33	23					
p0 queue free %	100	92	99					
cM capacity (veh/h)	521	968	1462					
Direction, Lane #	EB I		<u> </u>					
	01	405	00					
Volume Dight	Z 74	17	0					
	14	1460	4					
Volume to Conneitre	947	1402	0.05					
	0.08	0.01	0.05					
Queue Length 95th (m)	2.1	0.3	0.0					
Control Delay (S)	9.1	0.4	0.0					
	A	A	0.0					
Approach Delay (s)	9.1	0.4	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			1.5					
Intersection Capacity Utili	zation		30.3%	IC	CU Level o	of Service	Α	
Analysis Period (min)			15					

	4	•	Ť	1	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			et.
Traffic Volume (veh/h)	43	7	236	13	1	38
Future Volume (Veh/h)	43	7	236	13	1	38
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	55	9	369	20	2	58
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	441	379			389	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	441	379			389	
tC, single (s)	6.4	6.2			4.1	
tC. 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	90	99			100	
cM capacity (veh/h)	576	672			1181	
Direction Long #	\//D 1	ND 1	CD 1			
Direction, Lane #		200				
	64	369	00			
Volume Lett	55	0	2			
	500	20	0			
CSH	588	1700	1181			
Volume to Capacity	0.11	0.23	0.00			
Queue Length 95th (m)	2.9	0.0	0.0			
Control Delay (s)	11.9	0.0	0.3			
Lane LOS	В		A			
Approach Delay (s)	11.9	0.0	0.3			
Approach LOS	В					
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utilizati	ion		23.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	≯	7	1	t	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	ĥ	
Traffic Volume (veh/h)	11	20	31	82	219	7
Future Volume (Veh/h)	11	20	31	82	219	7
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56
Hourly flow rate (vph)	16	29	40	105	391	12
Pedestrians	1					
Lane Width (m)	3.6					
Walking Speed (m/s)	1.2					
Percent Blockage	0					
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	583	398	404			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	583	398	404			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	97	96	97			
cM capacity (veh/h)	461	645	1165			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	45	145	403			
Volume Left	16	40	0			
Volume Right	29	0	12			
cSH	565	1165	1700			
Volume to Capacity	0.08	0.03	0.24			
Queue Length 95th (m)	2.1	0.9	0.0			
Control Delay (s)	11.9	2.5	0.0			
Lane LOS	В	А				
Approach Delay (s)	11.9	2.5	0.0			
Approach LOS	В					
Intersection Summary						
Average Delav			1.5			
Intersection Capacity Utiliza	tion		31.4%	IC	U Level c	f Service
Analysis Period (min)			15			

	4	•	Ť	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			et.
Traffic Volume (veh/h)	20	2	43	49	3	204
Future Volume (Veh/h)	20	2	43	49	3	204
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57
Hourly flow rate (vph)	40	4	54	62	5	358
Pedestrians	1					1
Lane Width (m)	3.6					3.6
Walking Speed (m/s)	1.2					1.2
Percent Blockage	0					0
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	454	87			117	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	454	87			117	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	93	100			100	
cM capacity (veh/h)	565	975			1483	
Direction. Lane #	WB 1	NB 1	SB 1			
Volume Total	44	116	363			
Volume Left	40	0	5			
Volume Right	4	62	0			
cSH	588	1700	1483			
Volume to Capacity	0.07	0.07	0.00			
Queue Length 95th (m)	1.9	0.0	0.00			
Control Delay (s)	11.6	0.0	0.1			
Lane LOS	B	0.0	A			
Approach Delay (s)	11.6	0.0	0.1			
Approach LOS	В					
Interception Cummer						
Average Delay			4.4			
Average Delay	·		1.1			(0 - 1
Intersection Capacity Util	Ization		23.5%	IC	U Level o	of Service
Analysis Period (min)			15			

	٠	7	1	t	Ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			र्स	ţ,			
Traffic Volume (veh/h)	62	144	155	107	181	140		
Future Volume (Veh/h)	62	144	155	107	181	140		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.95	0.95	0.69	0.69		
Hourly flow rate (vph)	67	157	163	113	262	203		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	802	364	465					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	802	364	465					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	78	77	85					
cM capacity (veh/h)	300	681	1096					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	224	276	465					
Volume Left	67	163	0					
Volume Right	157	0	203					
cSH	494	1096	1700					
Volume to Capacity	0.45	0.15	0.27					
Queue Length 95th (m)	18.6	4.2	0.0					
Control Delay (s)	18.2	5.8	0.0					
Lane LOS	С	А						
Approach Delay (s)	18.2	5.8	0.0					
Approach LOS	С							
Intersection Summary							ļ	
Average Delav			5.9				i	
Intersection Capacity Utilizat	tion		54.6%	IC	CU Level o	f Service		
Analysis Period (min)			15					

Appendix E – Synchro Analysis Output – Background Traffic Volumes

	٨	7	1	t	Ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्भ	ţ,		
Traffic Volume (veh/h)	1	47	17	258	79	4	
Future Volume (Veh/h)	1	47	17	258	79	4	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91	
Hourly flow rate (vph)	2	94	27	403	87	4	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	547	90	92				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	547	90	92				
tC, single (s)	6.4	6.2	4.2				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.3				
p0 queue free %	100	90	98				
cM capacity (veh/h)	492	964	1459				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	96	430	91				
Volume Left	2	27	0				
Volume Right	94	0	4				
cSH	945	1459	1700				
Volume to Capacity	0.10	0.02	0.05				
Queue Length 95th (m)	2.7	0.5	0.0				
Control Delay (s)	9.2	0.6	0.0				
Lane LOS	А	А					
Approach Delay (s)	9.2	0.6	0.0				
Approach LOS	А						
Intersection Summary							
Average Delay			1.9				
Intersection Capacity Utiliza	ation		31.2%	IC	CU Level c	f Service	ŀ
Analysis Period (min)			15				

	1	*	t	1	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			र्स
Traffic Volume (veh/h)	45	7	246	14	1	40
Future Volume (Veh/h)	45	7	246	14	1	40
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	58	9	384	22	2	62
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC. conflicting volume	461	395			406	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	461	395			406	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	90	99			100	
cM capacity (veh/h)	561	659			1164	
Direction Lane #	\\/R 1	NR 1	CR 1			
Volumo Total	67	100	61			
	0/ E0	400	04			
Volume Leit	00	0	2			
	572	1700	1164			
CSH Maluma ta Canaaita	5/3	1700	1104			
Volume to Capacity	0.12	0.24	0.00			
Queue Length 95th (m)	3.2	0.0	0.0			
Control Delay (s)	1Z.1	0.0	0.3			
Lane LOS	40 4	0.0	A			
Approach Delay (s)	1Z.1	0.0	0.3			
Approach LOS	В					
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		23.8%	IC	U Level c	of Service
Analysis Period (min)			15			

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٠	7	1	T.	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	3	+	+	1
Traffic Volume (vph)	115	111	128	235	185	122
Future Volume (vph)	115	111	128	235	185	122
Lane Group Flow (vph)	177	171	166	305	213	140
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2		-	6
Detector Phase	4	4	5	2	6	6
Switch Phase			-		-	-
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
l ead/Lag	0.0	0.0	Lead	0.0	Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.60	0.42	0.20	0.24	0.21	0.16
Control Delay	40.8	8.4	4.9	5.8	11.5	2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.8	8.4	4.9	5.8	11.5	2.8
Queue Length 50th (m)	27.5	0.0	7 1	15.7	16.7	0.0
Queue Length 95th (m)	32.6	4.3	13.8	26.4	34.1	8.5
Internal Link Dist (m)	263.3	1.0	10.0	1013 1	521.8	0.0
Turn Bay Length (m)	200.0	30.0	45.0	1010.1	0211.0	30.0
Base Capacity (vph)	453	533	889	1272	1011	891
Starvation Can Reductn	0	000	000	0	0	0
Spillback Can Reductn	0	0	0	0	0	0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.39	0.32	0 19	0.24	0.21	0.16
	0.00	0.02	0.10	0.24	0.21	0.10
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 82.8						
Natural Cycle: 65						
Control Type: Semi Act-Unc	oord					
..						
Splits and Phases: 11: Fu	ller Avenu	e & Robe	rt Street I	East		

₫ Ø2	14	A 04
63 s		27 s
1 Ø5	♥ Ø6	
21 s	42 s	

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٠	7	1	1	Ŧ	~			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	5	1	5	+	+	1			
Traffic Volume (vph)	115	111	128	235	185	122			
Future Volume (vph)	115	111	128	235	185	122			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd, Flow (prot)	1787	1599	1736	1845	1863	1524			
Flt Permitted	0.95	1.00	0.57	1.00	1.00	1.00			
Satd. Flow (perm)	1787	1599	1048	1845	1863	1524			
Peak-hour factor, PHF	0.65	0.65	0.77	0.77	0.87	0.87			
Adi, Flow (vph)	177	171	166	305	213	140			
RTOR Reduction (vph)	0	143	0	0	0	64			
Lane Group Flow (vph)	177	28	166	305	213	76			
Heavy Vehicles (%)	1%	1%	4%	3%	2%	6%			
	Prot	Perm	nm+nt	NΔ		Perm			
Protected Phases	4	T CITI	5	2	6	T CITI			
Permitted Phases	7	4	2	2	0	6			
Actuated Green G (s)	13.7	13.7	57 1	57 1	45.0	45.0			
Effective Green a (s)	13.7	13.7	57.1	57.1	45.0	45.0			
Actuated g/C Ratio	0.17	0.17	0.69	0.69	0.54	0.54			
Clearance Time (s)	6.0	60	4.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grn Can (vnh)	295	264	790	1272	1012	828			
v/s Ratio Prot	c0 10	204	0.02	c0 17	0.11	020			
v/s Ratio Perm	00.10	0.02	0.02	00.17	0.11	0.05			
v/c Ratio	0.60	0.02	0.12	0 24	0.21	0.00			
Uniform Delay, d1	32.0	29.4	4.5	4.8	97	9.1			
Progression Factor	1 00	1 00	1.0	1 00	1 00	1 00			
Incremental Delay d2	3.3	0.2	0.1	0.4	0.5	0.2			
Delay (s)	35.3	29.5	4 7	5.2	10.2	9.3			
Level of Service	D	20.0 C	4.1	Δ	R	A			
Approach Delay (s)	32.5	J	/ /	50	99				
Approach LOS	C			A	A				
Intersection Summarv									
HCM 2000 Control Delay			14.6	H	CM 2000	Level of Service	се Се	B	
HCM 2000 Volume to Canac	tv ratio		0.33		2.11 2000			5	
Actuated Cycle Length (s)			82.8	Si	um of lost	time (s)		16.0	
Intersection Canacity Utilizat	ion		38.5%			of Service		A	
Analysis Period (min)			15						
c Critical Lane Group									

	٠	7	1	t	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	ħ		
Traffic Volume (veh/h)	11	30	38	85	228	7	
Future Volume (Veh/h)	11	30	38	85	228	7	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56	
Hourly flow rate (vph)	16	43	49	109	407	12	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	621	414	420				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	621	414	420				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	96	93	96				
cM capacity (veh/h)	435	631	1149				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	59	158	419				
Volume Left	16	49	0				
Volume Right	43	0	12				
cSH	562	1149	1700				
Volume to Capacity	0.10	0.04	0.25				
Queue Length 95th (m)	2.8	1.1	0.0				
Control Delay (s)	12.2	2.8	0.0				
Lane LOS	В	А					
Approach Delay (s)	12.2	2.8	0.0				
Approach LOS	В						
Intersection Summarv							
Average Delav			1.8				
Intersection Capacity Utiliza	ation		32.4%	IC	U Level a	of Service	
Analysis Period (min)	-		15				

	1	*	†	1	1	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		1.		-	្ឋ	
Traffic Volume (veh/h)	21	2	45	51	3	212	
Future Volume (Veh/h)	21	2	45	51	3	212	
Sian Control	Stop		Free	• •	-	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57	
Hourly flow rate (vph)	42	4	57	65	5	372	
Pedestrians	1					1	
Lane Width (m)	3.6					3.6	
Walking Speed (m/s)	1.2					1.2	
Percent Blockage	0					0	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	472	92			123		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	472	92			123		
tC. single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	92	100			100		
cM capacity (veh/h)	551	970			1475		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	46	122	377				
Volume Left	42	0	5				
Volume Right	4	65	0				
cSH	573	1700	1475				
Volume to Capacity	0.08	0.07	0.00				
Queue Length 95th (m)	2.1	0.0	0.1				
Control Delay (s)	11.8	0.0	0.1				
Lane LOS	Э	0.0	A				
Approach Delay (s)	11.8	0.0	0.1				
Approach LOS	В	0.0	•				
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Utili	zation		23.9%	IC	U Level o	of Service	,
Analysis Period (min)			15				

	٠	7	1	T.	ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	1	1	1
Traffic Volume (vph)	131	160	168	169	227	194
Future Volume (vph)	131	160	168	169	227	194
Lane Group Flow (vph)	142	174	177	178	329	281
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	4.5	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.53	0.45	0.24	0.14	0.32	0.28
Control Delay	39.4	9.2	4.6	4.7	11.8	2.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.4	9.2	4.6	4 7	11.8	2.5
Queue Length 50th (m)	21.6	0.0	6.9	7.8	26.3	0.7
Queue Length 95th (m)	39.3	16.6	15.7	17.1	36.9	4.0
Internal Link Dist (m)	263.3	10.0	10.1	1013 1	521.8	
Turn Bay Length (m)	200.0	30.0	45.0	1010.1	021.0	30.0
Base Canacity (vnh)	457	537	842	1306	1038	1004
Starvation Can Reductn	0	007	0	0	0	0
Snillback Can Reductn	0	0	0	0	0	0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.31	0.32	0.21	0.14	0.32	0.28
Intersection Summary			•	••••		
Cycle Length: 00						
Cycle Length: 90	4					
Actuated Cycle Length: 81.	.4					
Natural Cycle: 65						
Control Type: Semi Act-Un	coord					
Splite and Phases: 11. E		a & Roha	rt Street I	Fact		
	ullel Avenu	e a rube	IL SUEEL	Lαδί		

↑ ø 2	16	A 04	
63 s		27 s	
1 Ø5	♥ Ø6		
21 s	42 s		

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٠	7	1	1	Ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	•	•	1		
Traffic Volume (vph)	131	160	168	169	227	194		
Future Volume (vph)	131	160	168	169	227	194		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599		
Flt Permitted	0.95	1.00	0.49	1.00	1.00	1.00		
Satd. Flow (perm)	1770	1583	916	1863	1881	1599		
Peak-hour factor PHF	0 92	0.92	0.95	0.95	0.69	0.69		
Adi Flow (vph)	142	174	177	178	329	281		
RTOR Reduction (vph)	0	1/4	0	0	523	121		
Lane Group Flow (vph)	1/2	26	177	178	320	160		
	2%	20	2%	2%	1%	1%		
	Z /0	Z /0	2 /0	Z /0	1 /0 NIA	Dorm		
Protoctod Phases	PIU(Feilii	pin+pt	NA 2	NA C	Feilii		
Protected Phases	4	Λ	ວ າ	2	0	6		
Actuated Green C (a)	10.0	10.0	۲ 57 1	57 1	15.0	45.0		
Actualed Green, G (S)	12.3	12.3	57.1	57.1	45.0	45.0		
Effective Green, g (s)	12.3	12.3	0.70	57.1	45.0	45.0		
	0.15	0.15	0.70	0.70	0.55	0.55		
Clearance Time (s)	0.0	0.0	4.0	0.0	0.0	0.0		
venicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	267	239	/2/	1306	1039	883		
v/s Ratio Prot	c0.08	0.00	c0.02	0.10	c0.17	0.40		
v/s Ratio Perm	0.50	0.02	0.15	0.44	0.00	0.10		
v/c Ratio	0.53	0.11	0.24	0.14	0.32	0.18		
Uniform Delay, d1	31.9	29.8	4.3	4.0	9.9	9.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	2.0	0.2	0.2	0.2	0.8	0.5		
Delay (s)	33.9	30.0	4.5	4.2	10.7	9.5		
Level of Service	C	С	A	A	B	A		
Approach Delay (s)	31.8			4.4	10.1			
Approach LOS	С			A	В			
Intersection Summary								
HCM 2000 Control Delay			13.9	Н	CM 2000	Level of Servic	e B	
HCM 2000 Volume to Capa	acity ratio		0.35					
Actuated Cycle Length (s)			81.4	S	um of lost	t time (s)	16.0	
Intersection Capacity Utilization	ation		42.9%	IC	CU Level o	of Service	А	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	7	1	t	Ļ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	Y			र्स	ţ,				
Traffic Volume (veh/h)	1	52	19	285	87	5			
Future Volume (Veh/h)	1	52	19	285	87	5			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91			
Hourly flow rate (vph)	2	104	30	445	96	5			
Pedestrians	1								
Lane Width (m)	3.6								
Walking Speed (m/s)	1.2								
Percent Blockage	0								
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	604	100	102						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	604	100	102						
tC, single (s)	6.4	6.2	4.2						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.3						
p0 queue free %	100	89	98						
cM capacity (veh/h)	454	953	1446						
Direction Lane #	FB 1	NB 1	SB 1						
Volume Total	106	475	101						
Volume Left	2	30	0						
Volume Right	104	0	5						
cSH	933	1446	1700						
Volume to Capacity	0 11	0.02	0.06						
Queue Length 95th (m)	31	0.5	0.0						
Control Delay (s)	94	0.7	0.0						
Lane LOS	Δ	Δ	0.0						
Approach Delay (s)	94	0.7	0.0						
Approach LOS	Α	0.1	0.0						
						_	_		
Intersection Summary			4.0						
Average Delay	ization		1.9	10		f Convice		٨	
Analysis Daried (min)	12811011		32.1% 1E	IC		DI SEIVICE		A	
Analysis Period (min)			15						
	4	*	t	1	4	Ļ			
-------------------------------	-------	------	-------	------	-----------	------------			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		ţ,			र्स			
Traffic Volume (veh/h)	49	8	271	15	1	44			
Future Volume (Veh/h)	49	8	271	15	1	44			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65			
Hourly flow rate (vph)	63	10	423	23	2	68			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type			None			None			
Median storage veh)									
Upstream signal (m)									
pX. platoon unblocked									
vC. conflicting volume	506	434			446				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	506	434			446				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	88	98			100				
cM capacity (veh/h)	528	626			1125				
Direction Long #			00.1						
Volumo Totol			301						
	/3	446	70						
Volume Left	63	0	2						
Volume Right	10	23	0						
CSH	540	1/00	1125						
Volume to Capacity	0.14	0.26	0.00						
Queue Length 95th (m)	3.7	0.0	0.0						
Control Delay (s)	12.7	0.0	0.2						
Lane LOS	В		A						
Approach Delay (s)	12.7	0.0	0.2						
Approach LOS	В								
Intersection Summary									
Average Delay			1.6						
Intersection Capacity Utiliza	ation		25.2%	IC	U Level o	of Service			
Analysis Period (min)			15						

	٠	7	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	3	1	3	+	•	1
Traffic Volume (vph)	124	122	141	257	200	128
Future Volume (vph)	124	122	141	257	200	128
Lane Group Flow (vph)	191	188	183	334	230	147
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag	0.0	0.0	Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.62	0.44	0.23	0.26	0.23	0.17
Control Delay	41.3	82	53	6.2	12.3	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.3	8.2	5.3	6.2	12.3	2.9
Queue Length 50th (m)	29.9	0.0	8.2	18.1	18.8	0.0
Queue Length 95th (m)	34.8	3.9	15.6	29.9	38.1	8.9
Internal Link Dist (m)	263.3	0.0	10.0	1013 1	521.8	0.0
Turn Bay Length (m)	200.0	30.0	45.0	1010.1	0211.0	30.0
Base Capacity (vph)	450	543	874	1262	995	882
Starvation Can Reductn	0	0	0	0	000	0
Spillback Can Reductn	0	0	0	0	0	0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0 42	0.35	0.21	0.26	0.23	0 17
	0.72	0.00	0.21	0.20	0.20	0.17
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 83.	4					
Natural Cycle: 65						
Control Type: Semi Act-Uno	coord					
Splits and Phases: 11: F	uller Avenu	e & Robe	rt Street I	East		

1 Ø2	84	A 04	2
63 s		27 s	
1 Ø5	Ø6		
21 s	42 s		

	٠	7	1	t	ŧ	~			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	Y			र्स	f.				
Traffic Volume (veh/h)	13	32	42	94	252	8			
Future Volume (Veh/h)	13	32	42	94	252	8			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56			
Hourly flow rate (vph)	19	46	54	121	450	14			
Pedestrians	1								
Lane Width (m)	3.6								
Walking Speed (m/s)	1.2								
Percent Blockage	0								
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
vC, conflicting volume	687	458	465						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	687	458	465						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	95	92	95						
cM capacity (veh/h)	395	596	1106						
Direction Lane #	FR 1	NB 1	SB 1						
Volume Total	65	175	464						
Volume Left	19	54	0						
Volume Right	46	0	14						
cSH	519	1106	1700						
Volume to Canacity	0.13	0.05	0 27						
Queue Length 95th (m)	3.4	1.2	0.0						
Control Delay (s)	12 0	29	0.0						
Lane LOS	12.3 R	2.3	0.0						
Annroach Delay (s)	12 0	20	0.0						
Approach LOS	12.9 R	2.3	0.0						
	U				_	_	_		
Intersection Summary			1.0						
Average Delay			1.9			(0)			
Intersection Capacity Utili	zation		34.4%	IC	CU Level c	of Service		А	
Analysis Period (min)			15						

	1	*	†	1	1	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		ef 🕴			4	
Traffic Volume (veh/h)	23	2	49	56	3	234	
Future Volume (Veh/h)	23	2	49	56	3	234	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57	
Hourly flow rate (vph)	46	4	62	71	5	411	
Pedestrians	1					1	
Lane Width (m)	3.6					3.6	
Walking Speed (m/s)	1.2					1.2	
Percent Blockage	0					0	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	520	100			134		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	520	100			134		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	91	100			100		
cM capacity (veh/h)	518	960			1462		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	50	133	416				
Volume Left	46	0	5				
Volume Right	.5	71	0				
cSH	538	1700	1462				
Volume to Canacity	0.09	0.08	0.00				
Queue Length 95th (m)	24	0.0	0.00				
Control Delay (s)	12.4	0.0	0.1				
Lane LOS	R	0.0	Δ				
Approach Delay (s)	12 4	0.0	01				
Approach LOS	B	0.0	0.1				
Intersection Summary							
			1 1				
Intersection Canacity Litiliz	ation		25.0%			of Service	
	.au011		20.0%	iC			
Analysis Fendu (IIIII)			10				

	٠	7	1	†	Ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	5	+	+	1
Traffic Volume (vph)	137	175	185	181	247	209
Future Volume (vph)	137	175	185	181	247	209
Lane Group Flow (vph)	149	190	195	191	358	303
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	4.5	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.55	0.47	0.27	0.15	0.35	0.30
Control Delav	39.7	9.0	4.9	4.8	12.5	3.2
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.7	9.0	4.9	4.8	12.5	3.2
Queue Length 50th (m)	22.8	0.0	7.8	8.5	29.7	2.4
Queue Length 95th (m)	41.0	17.1	17.7	18.7	41.4	6.1
Internal Link Dist (m)	263.3			1013.1	521.8	
Turn Bay Length (m)		30.0	45.0			30.0
Base Capacity (vph)	455	548	815	1302	1028	995
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.33	0.35	0.24	0.15	0.35	0.30
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 81 F	3					
Natural Cycle: 65						
Control Type: Semi Act-Linc	oord					
control rype. com Act-one						
Splits and Phases: 11: Fu	uller Avenu	e & Robe	rt Street	East		

√ Ø2		, 	Ø4
63 s			27 s
0 5	♥ Ø6		
21 s	42 s		

	٠	7	1	1	Ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	*	*	1		
Traffic Volume (vph)	137	175	185	181	247	209		
Future Volume (vph)	137	175	185	181	247	209		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599		
Flt Permitted	0.95	1.00	0.47	1.00	1.00	1.00		
Satd Flow (perm)	1770	1583	869	1863	1881	1599		
Peak-hour factor PHF	0.92	0.92	0.95	0.95	0.69	0.69		
Adi Flow (vph)	149	190	105	101	358	303		
RTOR Reduction (vph)	0	161	135	0	000	121		
Lane Group Flow (vph)	1/0	20	105	101	358	182		
Heavy Vehicles (%)	2%	29	2%	2%	1%	1%		
	Z /0	Z /0	2 /0	2 /0 NIA	1 /0 NIA	Dorm		
Protocted Phases	FIUL	Penn	pm+pt		INA 6	Feilli		
Protected Phases	4	1	ວ ດ	2	0	6		
Actuated Green C (a)	10.6	4	۲ 57 1	E7 1	117	0		
Actuated Green, G (S)	12.0	12.0	57.1	57.1	44.7	44.7		
Effective Green, g (s)	12.0	12.0	0.70	57.1	44.7	44.7		
	0.15	0.15	0.70	0.70	0.55	0.55		
Clearance Time (s)	0.0	0.0	4.0	0.0	0.0	0.0		
	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	272	244	699	1302	1029	874		
V/s Ratio Prot	c0.08	0.00	c0.03	0.10	c0.19	0.44		
v/s Katio Perm	0.55	0.02	0.1/	0.45	0.05	0.11		
V/C Katio	0.55	0.12	0.28	0.15	0.35	0.21		
Unitorm Delay, d1	31.9	29.8	4.6	4.1	10.3	9.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	2.3	0.2	0.2	0.2	0.9	0.5		
Delay (s)	34.2	30.0	4.8	4.4	11.3	10.0		
Level of Service	C	С	A	A	B	A		
Approach Delay (s)	31.8			4.6	10.7			
Approach LOS	С			A	В			
Intersection Summary								
HCM 2000 Control Delay			14.2	Н	CM 2000	Level of Servic	e	В
HCM 2000 Volume to Capac	city ratio		0.38					
Actuated Cycle Length (s)			81.7	S	um of lost	t time (s)	16.	.0
Intersection Capacity Utiliza	tion		44.9%	IC	U Level o	of Service		A
Analysis Period (min)			15					
c Critical Lane Group								

	٠	7	1	t	ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	*	*	1		
Traffic Volume (vph)	124	122	141	257	200	128		
Future Volume (vph)	124	122	141	257	200	128		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1787	1599	1736	1845	1863	1524		
Flt Permitted	0.95	1.00	0.56	1.00	1.00	1.00		
Satd. Flow (perm)	1787	1599	1031	1845	1863	1524		
Peak-hour factor PHF	0.65	0.65	0.77	0.77	0.87	0.87		
Adi Flow (vnh)	101	188	183	334	230	147		
RTOR Reduction (vnh)	0	156	0	0.04	200	68		
Lane Group Flow (vph)	101	30	183	334	230	70		
Heavy Vehicles (%)	1%	1%	100	3%	200	6%		
	1 /0 Drot	Dorm	4 /0		Z /0	070 Dorm		
Turri Type	PIOL	Perm	pm+pt	NA 2	INA 6	Perm		
Protected Phases	4	1	ວ ວ	2	0	6		
Actuated Crean C (a)	11 2	4	۲ 57 1	E7 1	116	0		
Actualed Green, G (S)	14.0	14.3	57.1	57.1	44.0	44.0		
Effective Green, g (s)	14.3	14.3	0.69	0.69	44.0	44.0		
	0.17	0.17	0.08	0.08	0.53	0.53		
Clearance Time (s)	0.0	0.0	4.0	0.0	0.0	0.0		
Venicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	306	274	111	1263	996	814		
v/s Ratio Prot	CU.11	0.00	0.02	c0.18	0.12	0.05		
V/s Ratio Perm	0.00	0.02	0.14	0.00	0.00	0.05		
V/C Ratio	0.62	0.12	0.24	0.26	0.23	0.10		
Unitorm Delay, d1	32.1	29.2	4.8	5.1	10.3	9.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.9	0.2	0.2	0.5	0.5	0.2		
Delay (s)	36.0	29.4	4.9	5.6	10.8	9.8		
Level of Service	D	С	A	A	B	A		
Approach Delay (s)	32.7			5.3	10.4			
Approach LOS	С			A	В			
Intersection Summary								
HCM 2000 Control Delay			15.0	H	CM 2000	Level of Servic	e	B
HCM 2000 Volume to Capa	acity ratio		0.36					
Actuated Cycle Length (s)	•		83.4	Si	um of lost	t time (s)	16	.0
Intersection Capacity Utiliza	ation		40.0%	IC	U Level o	of Service		А
Analysis Period (min)			15					
c Critical Lane Group								

	4	•	t	1	4	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ţ,			et.
Traffic Volume (veh/h)	55	9	299	16	1	48
Future Volume (Veh/h)	55	9	299	16	1	48
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	71	12	467	25	2	74
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC. conflicting volume	558	480			492	
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	558	480			492	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	86	98			100	
cM capacity (veh/h)	494	590			1082	
Direction Lane #	\\/D 1	ND 1	CD 1			
Volumo Totol	02	100	76			
	03	492	/0			
Volume Leit	10	0	2			
	12	1700	1090			
CSH Velume te Cenecitu	0.10	0.20	1082			
Volume to Capacity	0.10	0.29	0.00			
Queue Length 95th (m)	4.7	0.0	0.0			
Control Delay (s)	13.5	0.0	0.2			
Lane LUS	40 F	0.0	A			
Approach Delay (s)	13.5	0.0	0.2			
Approach LOS	В					
Intersection Summary						
Average Delay			1.8			
Intersection Capacity Utilization	ation		27.0%	IC	U Level c	of Service
Analysis Period (min)			15			

	٠	7	1	T.	Ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	3	1	3	+	+	1
Traffic Volume (vph)	135	133	155	281	215	136
Future Volume (vph)	135	133	155	281	215	136
Lane Group Flow (vph)	208	205	201	365	247	156
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag	0.0	0.0	Lead		Lao	Lao
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.65	0.45	0.26	0.29	0.25	0.18
Control Delay	42.1	7.9	5.7	6.7	13.2	3.0
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.1	7.9	5.7	6.7	13.2	3.0
Queue Length 50th (m)	32.9	0.0	9.5	21.1	21.3	0.0
Queue Length 95th (m)	37.5	3.6	17.7	34.1	42.7	9.5
Internal Link Dist (m)	263.3	0.0		1013.1	521.8	0.0
Turn Bay Length (m)	_00.0	30.0	45.0		52110	30.0
Base Capacity (vph)	446	553	854	1252	977	873
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0 47	0.37	0.24	0 29	0 25	0.18
	0.11	0.01	V.E f	5.20	5.20	0.10
Intersection Summary						
Cycle Length: 90	<u>م</u>					
Actuated Cycle Length: 84.	2					
Natural Cycle: 65	aaard					
Control Type: Semi Act-Uno	coord					
Splits and Phases: 11. E	uller Avenu	a & Dobo	rt Stroot I	Eact		
opilis and Fliases. II. F				∟αοι		

Ø2		× 04	14 14
63 s		27 s	
\$ Ø5	♥ Ø6		
21 s	42 s		

	٠	7	1	t	Ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			र्स	f.			
Traffic Volume (veh/h)	14	34	45	104	278	9		
Future Volume (Veh/h)	14	34	45	104	278	9		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56		
Hourly flow rate (vph)	20	49	58	133	496	16		
Pedestrians	1							
Lane Width (m)	3.6							
Walking Speed (m/s)	1.2							
Percent Blockage	0							
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	754	505	513					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	754	505	513					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	94	91	95					
cM capacity (veh/h)	359	561	1062					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	69	191	512					
Volume Left	20	58	0					
Volume Right	49	0	16					
cSH	482	1062	1700					
Volume to Capacity	0.14	0.05	0.30					
Queue Length 95th (m)	4.0	1.4	0.0					
Control Delay (s)	13.7	3.0	0.0					
Lane LOS	B	A	0.0					
Approach Delay (s)	13.7	3.0	0.0					
Approach LOS	B	0.0	0.0					
Intersection Cummer	_							
Average Delev			2.0					
Average Delay	zation		2.0	10		of Convice	٨	
Analysis Pariod (min)	2011011		30.3% 15	IC		Service	А	
			15					

	4	•	Ť	1	4	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ţ,			र्भ
Traffic Volume (veh/h)	25	3	55	62	4	259
Future Volume (Veh/h)	25	3	55	62	4	259
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57
Hourly flow rate (vph)	50	6	70	78	7	454
Pedestrians	1					1
Lane Width (m)	3.6					3.6
Walking Speed (m/s)	1.2					1.2
Percent Blockage	0					0
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	578	111			149	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	578	111			149	
tC, single (s)	6.4	6.2			4.1	
tC. 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	90	99			100	
cM capacity (veh/h)	478	946			1444	
Direction Long #						
Direction, Lane #						
	56	148	461			
Volume Left	50	0	1			
Volume Right	6	/8	0			
CSH	505	1/00	1444			
Volume to Capacity	0.11	0.09	0.00			
Queue Length 95th (m)	3.0	0.0	0.1			
Control Delay (s)	13.0	0.0	0.2			
Lane LOS	В		A			
Approach Delay (s)	13.0	0.0	0.2			
Approach LOS	В					
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Util	ization		27.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	7	1	Ť	ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	٦	+	4	1
Traffic Volume (vph)	145	193	204	194	269	226
Future Volume (vph)	145	193	204	194	269	226
Lane Group Flow (vph)	158	210	215	204	390	328
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	4.5	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.56	0.49	0.31	0.16	0.38	0.33
Control Delay	40.0	8.9	5.3	5.1	13.5	3.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.0	8.9	5.3	5.1	13.5	3.9
Queue Length 50th (m)	24.3	0.0	9.0	9.5	34.1	4.5
Queue Length 95th (m)	43.1	17.8	19.9	20.5	46.7	8.7
Internal Link Dist (m)	263.3			1013.1	521.8	
Turn Bay Length (m)		30.0	45.0			30.0
Base Capacity (vph)	453	561	784	1295	1013	984
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.37	0.27	0.16	0.38	0.33
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 82.1						
Natural Cycle: 65						
Control Type: Semi Act-Upon	ord					
Control Type. Semi Act-OffCo	olu					
Splits and Phases: 11: Full	er Avenu	e & Robe	rt Street I	East		

Ø2		5	× 04	22
63 s			27 s	
1 Ø5	Ø6			
21 s	42 s			

	٠	7	1	1	Ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	+	+	1		
Traffic Volume (vph)	145	193	204	194	269	226		
Future Volume (vph)	145	193	204	194	269	226		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599		
Flt Permitted	0.95	1.00	0.44	1.00	1.00	1.00		
Satd, Flow (perm)	1770	1583	816	1863	1881	1599		
Peak-hour factor PHF	0 92	0.92	0.95	0.95	0.69	0.69		
Adi Flow (vnh)	158	210	215	204	300	328		
RTOR Reduction (vph)	0	177	215	204	0.00	122		
Lane Group Flow (vph)	158	22	215	204	300	206		
	2%	2%	215	204	1%	1%		
	Z /0	Z /0	2 /0	Z /0	170 NIA	Dorm		
	PIU(Feilil	pin+pt	NA 2	NA 6	reiiii		
Protected Phases	4	Λ	ວ ງ	2	0	6		
Actuated Green C (a)	12.0	12.0	۲ 57 1	57 1	112	113		
Effective Crean a (a)	13.0	13.0	57.1	57.1	44.3	44.5		
Effective Green, g (S)	13.0	13.0	57.1 0.70	57.1 0.70	44.3	44.3		
	0.10	0.16	0.70	0.70	0.54	0.54		
Vehicle Extension (s)	0.0	0.0	4.0	0.0	0.0	0.0		
	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	280	250	669	1295	1014	862		
v/s Ratio Prot	c0.09	0.00	CU.U3	0.11	c0.21	0.42		
V/S Ratio Perm	0.50	0.02	0.19	0.40	0.00	0.13		
V/C Katio	0.56	0.13	0.32	0.16	0.38	0.24		
Uniform Delay, d1	31.9	29.7	4.9	4.3	11.0	10.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	2.6	0.2	0.3	0.3	1.1	0.7		
Delay (s)	34.5	29.9	5.2	4.5	12.1	10.6		
Level of Service	U A A A	C	А	A	В	В		
Approach Delay (s)	31.9			4.9	11.4			
Approach LOS	C			A	В			
Intersection Summary								
HCM 2000 Control Delay			14.6	Н	CM 2000	Level of Servic	e E	}
HCM 2000 Volume to Capa	acity ratio		0.41					
Actuated Cycle Length (s)			82.1	S	um of lost	time (s)	16.0)
Intersection Capacity Utilization	ation		47.1%	IC	CU Level o	of Service	A	١
Analysis Period (min)			15					
c Critical Lane Group								

	٠	7	1	t	ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	*	*	1		_
Traffic Volume (vph)	135	133	155	281	215	136		
Future Volume (vph)	135	133	155	281	215	136		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1787	1599	1736	1845	1863	1524		
Flt Permitted	0.95	1.00	0.55	1.00	1.00	1.00		
Satd. Flow (perm)	1787	1599	1007	1845	1863	1524		
Peak-hour factor PHF	0.65	0.65	0.77	0.77	0.87	0.87		
Adi, Flow (vph)	208	205	201	365	247	156		
RTOR Reduction (vph)	0	168	0	0	0	74		
Lane Group Flow (vph)	208	37	201	365	247	82		
Heavy Vehicles (%)	1%	1%	4%	3%	2%	6%		
Turn Type	Prot	Perm	nm+nt	NA		Perm		
Protected Phases	4	T OILI	5	2	6	1 Onn		
Permitted Phases	т	4	2	2	Ū	6		
Actuated Green, G (s)	15.0	15.0	57 1	57 1	44 2	44.2		
Effective Green, g (s)	15.0	15.0	57.1	57.1	44.2	44.2		
Actuated g/C Ratio	0.18	0.18	0.68	0.68	0.53	0.53		
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grn Can (vnh)	318	285	760	1252	0.0	800		
v/s Ratio Prot	c0 12	205	0.03	c0 20	0.13	000		
v/s Ratio Perm	00.12	0.02	0.05	00.20	0.15	0.05		
v/c Ratio	0.65	0.02	0.10	0 29	0.25	0.10		
Uniform Delay d1	32.1	29.1	5.0	54	10.20	10.0		
Progression Factor	1 00	1 00	1.00	1 00	1 00	1 00		
Incremental Delay, d2	4.8	0.2	0.2	0.6	0.6	0.3		
Delay (s)	36.9	29.3	5.2	6.0	11.5	10.3		
Level of Service	D	20.0 C	Δ	Δ	R	B		
Approach Delay (s)	33.1	J	/ \	57	11 0			
Approach LOS	C			A	В			
Intersection Summary								
HCM 2000 Control Delav			15.5	H	CM 2000	Level of Servic	e	В
HCM 2000 Volume to Capac	city ratio		0.39				-	_
Actuated Cycle Length (s)			84 1	Si	um of lost	time (s)	1	6.0
Intersection Canacity Utilizat	tion		41.6%		ULevel	of Service		A
Analysis Period (min)			15	10	2 201010			
c Critical Lane Group								

1255 Fuller Avenue 1000239074 Ontario Inc. JDE-21181 Date: August 9th, 2023

Appendix F – Transportation Tomorrow Survey – Excerpt

Wed Jan 25 2023 16:21:36 GMT-0500 (Eastern Standard Time) - Run Time: 2469ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06_dest Column: 2006 GTA zone of household - gta06_hhld

Filters:

(2006 GTA zone of household - gta06_hhld In 8573 and

Trip purpose of destination - pur R

and

Start time of trip - start_time In 700 - 900)

Trip 2016

Project: 1255 Fuller Avenue TIS

Table:													
TO (Destination)	FROM (Ori	gin)											
				North via	East via	West via	south via	West via	North via	East via	West via	south via	West via
	8573	Trip %	Destinatio	Fuller	Sandy Bay	Broad st	fuller	Robert	Fuller	Sandy Bay	Broad st	fuller	Robert
2095	18	9.14%	Vaughan	0%	0%	0%	50%	50%	0.00%	0.00%	0.00%	4.57%	4.57%
2207	12	6.09%	Richmond	0%	0%	0%	50%	50%	0.00%	0.00%	0.00%	3.05%	3.05%
8571	12	6.09%	Tiny	0%	0%	0%	20%	80%	0.00%	0.00%	0.00%	1.22%	4.87%
8574	6	3.05%	Penetangu	0%	0%	20%	20%	60%	0.00%	0.00%	0.61%	0.61%	1.83%
8576	18	9.14%	Midland	0%	0%	0%	80%	20%	0.00%	0.00%	0.00%	7.31%	1.83%
8578	25	12.69%	Midland	0%	0%	0%	80%	20%	0.00%	0.00%	0.00%	10.15%	2.54%
8604	31	15.74%	Tiny	0%	0%	0%	20%	80%	0.00%	0.00%	0.00%	3.15%	12.59%
8660	44	22.34%	Тау	0%	0%	0%	100%	0%	0.00%	0.00%	0.00%	22.34%	0.00%
8665	31	15.74%	Penetangu	0%	0%	25%	75%	0%	0.00%	0.00%	3.93%	11.80%	0.00%
TOTAL	197	100.00%							0.00%	0.00%	4.54%	64.19%	31.27%
							Total of tot	als	100.00%				

1255 Fuller Avenue 1000239074 Ontario Inc. JDE-21181 Date: August 9th, 2023

Appendix G – Synchro Analysis Output – Total Traffic Volumes

	٠	7	1	t	Ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			é.	¢Î,			
Traffic Volume (veh/h)	1	47	17	267	109	5		
Future Volume (Veh/h)	1	47	17	267	109	5		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91		
Hourly flow rate (vph)	2	94	27	417	120	5		
Pedestrians	1							
Lane Width (m)	3.6							
Walking Speed (m/s)	1.2							
Percent Blockage	0							
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX. platoon unblocked								
vC. conflicting volume	594	124	126					
vC1. stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	594	124	126					
tC, single (s)	6.4	6.2	4.2					
tC, 2 stage (s)	••••	•						
tF (s)	3.5	33	23					
n0 queue free %	100	90	.98					
cM capacity (veh/h)	461	924	1417					
			0.0.4					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Lotal	96	444	125					
Volume Lett	2	21	0					
	94	U	5 1700					
Volume to Conseiltre	905	1417	1/00					
volume to Capacity	0.11	0.02	0.07					
Queue Length 95th (m)	2.8	0.5	0.0					
Control Delay (S)	9.4	0.6	0.0					
Lane LOS	A	A	0.0					
Approach Delay (s)	9.4	0.6	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			1.8					
Intersection Capacity Util	ization		31.7%	IC	CU Level c	of Service	А	
Analysis Period (min)			15					

	-	7	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	î,			é.	¥		
Traffic Volume (veh/h)	15	9	0	52	31	0	
Future Volume (Veh/h)	15	9	0	52	31	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	16	10	0	57	34	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			26		78	21	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			26		78	21	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		96	100	
cM capacity (veh/h)			1588		925	1056	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	26	57	34				
Volume Left	0	0	34				
Volume Right	10	0	0				
cSH	1700	1588	925				
Volume to Capacity	0.02	0.00	0.04				
Queue Length 95th (m)	0.0	0.0	0.9				
Control Delay (s)	0.0	0.0	9.0				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.0				
Approach LOS			А				
Intersection Summary							
Average Delay			2.6				
Intersection Capacity Utiliz	ation		13.3%	IC	U Level o	of Service	А
Analysis Period (min)			15				

	-	*	T.	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ţ,			د أ
Traffic Volume (veh/h)	76	7	246	23	1	40
Future Volume (Veh/h)	76	7	246	23	1	40
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	97	9	384	36	2	62
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	468	402			420	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	468	402			420	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	83	99			100	
cM capacity (veh/h)	556	653			1150	
Direction. Lane #	WB 1	NB 1	SB 1			
Volume Total	106	420	64			
Volume Left	97	0	2			
Volume Right	9	36	0			
cSH	563	1700	1150			
Volume to Capacity	0.19	0.25	0.00			
Queue Length 95th (m)	5.5	0.0	0.0			
Control Delay (s)	12.9	0.0	0.3			
Lane LOS	B	0.0	A			
Approach Delay (s)	12.9	0.0	0.3			
Approach LOS	В	0.0	0.0			
Intersection Summary						
Average Delay			2.3			
Intersection Capacity Util	ization		25.6%	IC	U Level o	f Service
Analysis Period (min)	-		15			

	•	7	1	†	+	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	5	+	+	1
Traffic Volume (vph)	118	111	128	241	205	132
Future Volume (vph)	118	111	128	241	205	132
Lane Group Flow (vph)	182	171	166	313	236	152
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag	0.0	0.0	Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.61	0.42	0.21	0.25	0.23	0.17
Control Delay	40.9	8.3	5.0	6.0	11.9	2.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.9	8.3	5.0	6.0	11.9	2.7
Queue Length 50th (m)	28.4	0.0	7.2	16.5	18.9	0.0
Queue Length 95th (m)	33.5	4.1	14.0	27.4	38.0	8.8
Internal Link Dist (m)	263.3			1013.1	521.8	0.0
Turn Bay Length (m)	_00.0	30.0	45.0		0_110	30.0
Base Capacity (vph)	452	532	875	1268	1007	894
Starvation Can Reductn	0	0	0	0	0	0
Spillback Can Reductn	0	0	0	0	0	0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0 40	0.32	0 19	0.25	0 23	0 17
	0.10	0.02	5.10	5.20	5.20	J .11
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 83.	1					
Natural Cycle: 65						
Control Type: Semi Act-Uno	coord					
	11					
Splits and Phases: 11: Fi	uller Avenu	e & Robe	rt Street I	=ast		

M Ø2		₹ ø4
63 s		27 s
\$ Ø5	₽ Ø6	
21 s	42 s	

JD Engineering

	٨	7	1	1	ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	+	*	1		
Traffic Volume (vph)	118	111	128	241	205	132		
Future Volume (vph)	118	111	128	241	205	132		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1787	1599	1736	1845	1863	1524		
Flt Permitted	0.95	1.00	0.56	1.00	1.00	1.00		
Satd. Flow (perm)	1787	1599	1026	1845	1863	1524		
Peak-hour factor, PHF	0.65	0.65	0.77	0.77	0.87	0.87		
Adj. Flow (vph)	182	171	166	313	236	152		
RTOR Reduction (vph)	0	142	0	0	0	70		
Lane Group Flow (vph)	182	29	166	313	236	82		
Heavy Vehicles (%)	1%	1%	4%	3%	2%	6%		
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4		5	2	6			
Permitted Phases		4	2			6		
Actuated Green, G (s)	14.0	14.0	57.1	57.1	44.9	44.9		
Effective Green, g (s)	14.0	14.0	57.1	57.1	44.9	44.9		
Actuated g/C Ratio	0.17	0.17	0.69	0.69	0.54	0.54		
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	301	269	775	1267	1006	823		
v/s Ratio Prot	c0.10		0.02	c0.17	0.13			
v/s Ratio Perm		0.02	0.13			0.05		
v/c Ratio	0.60	0.11	0.21	0.25	0.23	0.10		
Uniform Delay, d1	32.0	29.3	4.6	4.9	10.1	9.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.4	0.2	0.1	0.5	0.5	0.2		
Delay (s)	35.4	29.4	4.7	5.4	10.6	9.5		
Level of Service	D	С	А	А	В	А		
Approach Delay (s)	32.5			5.2	10.2			
Approach LOS	С			Α	В			
Intersection Summary								
HCM 2000 Control Delay			14.7	H	CM 2000	Level of Servi	ce B	
HCM 2000 Volume to Cap	acity ratio		0.34					
Actuated Cycle Length (s)			83.1	Si	um of lost	t time (s)	16.0	
Intersection Capacity Utiliz	ation		39.5%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	7	1	t	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	ţ,		
Traffic Volume (veh/h)	12	30	38	116	245	8	
Future Volume (Veh/h)	12	30	38	116	245	8	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56	
Hourly flow rate (vph)	17	43	49	149	438	14	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	693	446	453				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	693	446	453				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	96	93	96				
cM capacity (veh/h)	394	606	1117				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	60	198	452				
Volume Left	17	49	0				
Volume Right	43	0	14				
cSH	526	1117	1700				
Volume to Capacity	0.11	0.04	0.27				
Queue Length 95th (m)	3.1	1.1	0.0				
Control Delay (s)	12.7	2.4	0.0				
Lane LOS	В	Α					
Approach Delay (s)	12.7	2.4	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.7				
Intersection Capacity Utilization	on		34.9%	IC	U Level c	of Service	A
Analysis Period (min)			15				

1255 Fuller Avenue3: Site Access & Sandy Bay Road

	-	7	*	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	î,			÷.	¥		Τ
Traffic Volume (veh/h)	54	32	0	23	18	0	
Future Volume (Veh/h)	54	32	0	23	18	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	59	35	0	25	20	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			94		102	76	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			94		102	76	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		98	100	
cM capacity (veh/h)			1500		897	985	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	94	25	20				
Volume Left	0	0	20				
Volume Right	35	0	0				
cSH	1700	1500	897				
Volume to Capacity	0.06	0.00	0.02				
Queue Length 95th (m)	0.0	0.0	0.5				
Control Delay (s)	0.0	0.0	9.1				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.1				
Approach LOS			А				
Intersection Summary							
Average Delay			1.3				
Intersection Capacity Util	ization		14.8%	IC	U Level c	of Service	
Analysis Period (min)			15				

	1	•	Ť	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			et.
Traffic Volume (veh/h)	39	2	45	83	3	212
Future Volume (Veh/h)	39	2	45	83	3	212
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57
Hourly flow rate (vph)	78	4	57	105	5	372
Pedestrians	1					1
Lane Width (m)	3.6					3.6
Walking Speed (m/s)	1.2					1.2
Percent Blockage	0					0
Right turn flare (veh)	5					-
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC. conflicting volume	492	112			163	
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	492	112			163	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	85	100			100	
cM capacity (veh/h)	537	946			1427	
Direction Lane #	WB 1	NB 1	SB 1			
Volume Total	82	162	377			
Volume Left	78	0	5			
Volume Right	4	105	0			
cSH	549	1700	1427			
Volume to Canacity	0.15	0 10	0.00			
Oueue Length 95th (m)	4.2	0.10	0.00			
Control Delay (s)	12 7	0.0	0.1			
	12.7 R	0.0	Δ			
Approach Delay (s)	12 7	0.0	0.1			
Approach LOS	12.7 B	0.0	0.1			
	0		_	_	_	_
Intersection Summary			4.0			
Average Delay			1.8	10		(0
Intersection Capacity Utiliz	zation		23.9%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	7	1	†	ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	3	+	4	1
Traffic Volume (vph)	141	160	168	190	238	200
Future Volume (vph)	141	160	168	190	238	200
Lane Group Flow (vph)	153	174	177	200	345	290
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	4.5	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4 0	4 0	3.0	4 0	4 0	4 0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
l ead/l ag	0.0	0.0	Lead	0.0	l an	l ag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.56	0 44	0.24	0 15	0.33	0 29
Control Delay	39.00	89	4.8	4 9	12.2	29
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.9	89	4.8	49	12.2	29
Queue Length 50th (m)	23.4	0.0	7.1	9.1	28.3	1.5
Queue Length 95th (m)	<u>∠</u> 0.7	16 <i>4</i>	16.3	19.7	30.5	5.2
Internal Link Dist (m)	263.3	10.4	10.0	1013 1	521.8	0.2
Turn Bay Length (m)	200.0	30.0	45.0	1015.1	521.0	30.0
Base Canacity (vph)	151	536	82/	1200	1032	007
Stanuation Can Boducto	404	0.0	024	1299	1032	551
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	0.24	0 22	0.21	0 15	0 22	0.20
	0.34	0.32	U.21	0.15	0.33	0.29
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 81.8						
Natural Cycle: 65						
Control Type: Semi Act-Unco	oord					
Splits and Phases: 11: Ful	ler Avenu	e & Robe	rt Street I	East		

₫ ø2		A 04	2
63 s		27 s	
Ø 5	♥ Ø6		
21 s	42 s		

	٠	7	1	1	ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	٦	1	ň	+	+	1		
Traffic Volume (vph)	141	160	168	190	238	200		
Future Volume (vph)	141	160	168	190	238	200		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599		
Flt Permitted	0.95	1.00	0.48	1.00	1.00	1.00		
Satd. Flow (perm)	1770	1583	889	1863	1881	1599		
Peak-hour factor, PHF	0.92	0.92	0.95	0.95	0.69	0.69		
Adj. Flow (vph)	153	174	177	200	345	290		
RTOR Reduction (vph)	0	147	0	0	0	120		
Lane Group Flow (vph)	153	27	177	200	345	170		
Heavy Vehicles (%)	2%	2%	2%	2%	1%	1%		
	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4		5	2	6			
Permitted Phases		4	2		-	6		
Actuated Green, G (s)	12.8	12.8	57.1	57.1	45.0	45.0		
Effective Green, g (s)	12.8	12.8	57.1	57.1	45.0	45.0		
Actuated g/C Ratio	0.16	0.16	0.70	0.70	0.55	0.55		
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	276	247	706	1298	1033	878		
v/s Ratio Prot	c0.09		c0.02	0.11	c0.18			
v/s Ratio Perm		0.02	0.15			0.11		
v/c Ratio	0.55	0.11	0.25	0.15	0.33	0.19		
Uniform Delay, d1	31.9	29.7	4.5	4.2	10.2	9.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	2.4	0.2	0.2	0.3	0.9	0.5		
Delay (s)	34.3	29.9	4.7	4.5	11.1	9.8		
Level of Service	С	С	А	А	В	А		
Approach Delay (s)	31.9			4.6	10.5			
Approach LOS	С			А	В			
Intersection Summary								
HCM 2000 Control Delay			14.1	H	CM 2000	Level of Servic	æ B	
HCM 2000 Volume to Capaci	ty ratio		0.37					
Actuated Cycle Length (s)			81.9	Si	um of lost	t time (s)	16.0	
Intersection Capacity Utilizati	on		43.5%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	7	1	t	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	ef.		
Traffic Volume (veh/h)	1	52	19	294	117	6	
Future Volume (Veh/h)	1	52	19	294	117	6	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91	
Hourly flow rate (vph)	2	104	30	459	129	7	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	652	134	137				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	652	134	137				
tC, single (s)	6.4	6.2	4.2				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.3				
p0 queue free %	100	89	98				
cM capacity (veh/h)	426	912	1404				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	106	489	136				
Volume Left	2	30	0				
Volume Right	104	0	7				
cSH	893	1404	1700				
Volume to Capacity	0.12	0.02	0.08				
Queue Length 95th (m)	3.2	0.5	0.0				
Control Delay (s)	9.6	0.7	0.0				
Lane LOS	А	А					
Approach Delay (s)	9.6	0.7	0.0				
Approach LOS	А						
Intersection Summary							
Average Delav			1.8				
Intersection Capacity Utilizat	tion		36.6%	IC	U Level o	of Service	
Analysis Period (min)			15				

1255 Fuller Avenue3: Site Access & Sandy Bay Road

	-	7	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f,			ŧ	Y		
Traffic Volume (veh/h)	16	9	0	57	31	0	
Future Volume (Veh/h)	16	9	0	57	31	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	17	10	0	62	34	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			27		84	22	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			27		84	22	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		96	100	
cM capacity (veh/h)			1587		918	1055	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	27	62	34				
Volume Left	0	0	34				
Volume Right	10	0	0				
cSH	1700	1587	918				
Volume to Capacity	0.02	0.00	0.04				
Queue Length 95th (m)	0.0	0.0	0.9				
Control Delay (s)	0.0	0.0	9.1				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.1				
Approach LOS			А				
Intersection Summary							
Average Delay			2.5				
Intersection Capacity Utilization	ation		13.3%	IC	U Level o	of Service	A
Analysis Period (min)			15				

	1	*	1	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ţ,			<u>ل</u>
Traffic Volume (veh/h)	80	8	271	24	1	44
Future Volume (Veh/h)	80	8	271	24	1	44
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	103	10	423	38	2	68
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	514	442			461	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	514	442			461	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	98			100	
cM capacity (veh/h)	523	620			1111	
Direction. Lane #	WB 1	NB 1	SB 1			
Volume Total	113	461	70			
Volume Left	103	0	2			
Volume Right	10	38	0			
cSH	530	1700	1111			
Volume to Capacity	0.21	0.27	0.00			
Queue Length 95th (m)	6.4	0.0	0.0			
Control Delay (s)	13.6	0.0	0.3			
Lane LOS	B	0.0	A			
Approach Delay (s)	13.6	0.0	0.3			
Approach LOS	В	0.0	010			
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Util	ization		27.3%	IC	U Level o	of Service
Analysis Period (min)			15			

Splits and Phases: 11: Fuller Avenue & Robert Street East

1 Ø2		A @4	
63 s		27 s	
1 Ø5	✓ Ø6		
21 s	42 s		

	٠	7	1	1	Ŧ	~			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	3	1	7	•	+	1			
Traffic Volume (vph)	127	122	141	263	220	138			
Future Volume (vph)	127	122	141	263	220	138			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd, Flow (prot)	1787	1599	1736	1845	1863	1524			
Flt Permitted	0.95	1.00	0.55	1.00	1.00	1.00			
Satd. Flow (perm)	1787	1599	1001	1845	1863	1524			
Peak-hour factor, PHF	0.65	0.65	0.77	0.77	0.87	0.87			
Adi, Flow (vph)	195	188	183	342	253	159			
RTOR Reduction (vph)	.00	155	0	0	0	74			
Lane Group Flow (vph)	195	33	183	342	253	85			
Heavy Vehicles (%)	1%	1%	4%	3%	2%	6%			
Turn Type	Prot	Perm	nm+nt	NA	NA	Perm			
Protected Phases	4	T OIIII	5	2	6	1 Gilli			
Permitted Phases	•	4	2	-	v	6			
Actuated Green G (s)	14 5	14 5	57 1	57 1	44 6	44.6			
Effective Green a (s)	14.5	14.5	57.1	57.1	44.6	44.6			
Actuated g/C Ratio	0.17	0.17	0.68	0.68	0.53	0.53			
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Gro Cap (vph)	309	277	758	1260	993	813			
v/s Ratio Prot	c0 11		0.02	c0 19	0.14	010			
v/s Ratio Perm	00.11	0.02	0.14	00.10	0.11	0.06			
v/c Ratio	0.63	0.12	0.24	0.27	0.25	0.10			
Uniform Delay, d1	32.1	29.2	4.8	5.2	10.5	9.6			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay. d2	4.2	0.2	0.2	0.5	0.6	0.3			
Delay (s)	36.2	29.3	5.0	5.7	11.1	9.9			
Level of Service	D	C	A	A	В	A			
Approach Delay (s)	32.8	÷		5.4	10.7				
Approach LOS	C			A	В				
Intersection Summary									
HCM 2000 Control Delav			15.0	H	CM 2000	Level of Servio	же	B	
HCM 2000 Volume to Capac	city ratio		0.36						
Actuated Cycle Length (s)	,		83.6	Si	um of lost	time (s)		16.0	
Intersection Capacity Utiliza	tion		41.1%	IC	U Level o	of Service		A	
Analysis Period (min)			15						
c Critical Lane Group									

	٠	7	1	t	Ļ	~	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	ţ,		
Traffic Volume (veh/h)	14	32	42	125	269	9	
Future Volume (Veh/h)	14	32	42	125	269	9	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56	
Hourly flow rate (vph)	20	46	54	160	480	16	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	757	489	497				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	757	489	497				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	94	92	95				
cM capacity (veh/h)	359	573	1076				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	66	214	496				
Volume Left	20	54	0				
Volume Right	46	0	16				
cSH	485	1076	1700				
Volume to Capacity	0.14	0.05	0.29				
Queue Length 95th (m)	3.7	1.3	0.0				
Control Delay (s)	13.6	2.5	0.0				
Lane LOS	В	А					
Approach Delay (s)	13.6	2.5	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.8				
Intersection Capacity Utilization	on		36.9%	IC	CU Level o	of Service	А
Analysis Period (min)			15				

1255 Fuller Avenue3: Site Access & Sandy Bay Road

	-	7	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ţ,			đ,	¥		
Traffic Volume (veh/h)	59	32	0	25	18	0	
Future Volume (Veh/h)	59	32	0	25	18	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	64	35	0	27	20	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			99		108	82	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			99		108	82	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		98	100	
cM capacity (veh/h)			1494		889	978	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	99	27	20				
Volume Left	0	0	20				
Volume Right	35	0	0				
cSH	1700	1494	889				
Volume to Capacity	0.06	0.00	0.02				
Queue Length 95th (m)	0.0	0.0	0.6				
Control Delay (s)	0.0	0.0	9.1				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.1				
Approach LOS			А				
Intersection Summarv							
Average Delay			13				
Intersection Canacity Utiliza	tion		15.1%	IC	Ulevelo	of Service	
Analysis Period (min)			15	.0	0.0.0		í

	-	*	Ť	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		Ţ.			đ
Traffic Volume (veh/h)	41	2	49	88	3	234
Future Volume (Veh/h)	41	2	49	88	3	234
Sign Control	Stop	_	Free		· ·	Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.79	0 79	0.57	0.57
Hourly flow rate (yph)	82	4	62	111	5	411
Pedestrians	1		02		Ŭ	1
Lane Width (m)	36					36
Walking Speed (m/s)	1.2					1.2
Percent Blockage	0					0
Picefil Diockage	0					0
Modian type			Nono			Nono
Median type			NULLE			None
linetroom signal (m)						
opstream signal (m)						
pX, platoon unblocked	540	400			474	
vC, conflicting volume	540	120			174	
VC1, stage 1 conf voi						
VC2, stage 2 cont voi	540	400			474	
VCu, unblocked vol	540	120			174	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
t⊦ (s)	3.5	3.3			2.2	
p0 queue free %	84	100			100	
cM capacity (veh/h)	504	936			1414	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	86	173	416			
Volume Left	82	0	5			
Volume Right	4	111	0			
cSH	515	1700	1414			
Volume to Capacity	0.17	0.10	0.00			
Queue Length 95th (m)	4.8	0.0	0.1			
Control Delay (s)	13.4	0.0	0.1			
Lane LOS	В		A			
Approach Delay (s)	13.4	0.0	0.1			
Approach LOS	В		•••			
Intersection Summer						
			1.0			
Average Delay			1.ŏ	10		4 Consis
Intersection Capacity Utili	zation		25.0%	IC	U Level o	of Service
Analysis Period (min)			15			
Splits and Phases: 11: Fuller Avenue & Robert Street East

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٠	7	1	1	Ŧ	~			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	5	1	7	•	•	1			
Traffic Volume (vph)	147	175	185	202	258	215			
Future Volume (vph)	147	175	185	202	258	215			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599			
Flt Permitted	0.95	1.00	0.45	1.00	1.00	1.00			
Satd. Flow (perm)	1770	1583	842	1863	1881	1599			
Peak-hour factor, PHF	0.92	0.92	0.95	0.95	0.69	0.69			
Adj. Flow (vph)	160	190	195	213	374	312			
RTOR Reduction (vph)	0	160	0	0	0	121			
Lane Group Flow (vph)	160	30	195	213	374	191			
Heavy Vehicles (%)	2%	2%	2%	2%	1%	1%			
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm			
Protected Phases	4		5	2	6				
Permitted Phases		4	2			6			
Actuated Green, G (s)	13.1	13.1	57.1	57.1	44.6	44.6			
Effective Green, g (s)	13.1	13.1	57.1	57.1	44.6	44.6			
Actuated g/C Ratio	0.16	0.16	0.69	0.69	0.54	0.54			
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	282	252	680	1294	1020	867			
v/s Ratio Prot	c0.09		c0.03	0.11	c0.20				
v/s Ratio Perm		0.02	0.17			0.12			
v/c Ratio	0.57	0.12	0.29	0.16	0.37	0.22			
Uniform Delay, d1	31.9	29.6	4.8	4.3	10.7	9.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	2.6	0.2	0.2	0.3	1.0	0.6			
Delay (s)	34.5	29.8	5.0	4.6	11.8	10.4			
Level of Service	С	С	А	А	В	В			
Approach Delay (s)	32.0			4.8	11.1				
Approach LOS	С			А	В				
Intersection Summary									
HCM 2000 Control Delay			14.4	H	CM 2000	Level of Servic	e	В	
HCM 2000 Volume to Capa	acity ratio		0.40						
Actuated Cycle Length (s)			82.2	S	um of lost	t time (s)		16.0	
Intersection Capacity Utilization	ation		45.5%	IC	CU Level o	of Service		А	
Analysis Period (min)			15						
c Critical Lane Group									

	٠	7	1	t	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	ţ,		
Traffic Volume (veh/h)	1	56	20	0	126	6	
Future Volume (Veh/h)	1	56	20	0	126	6	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.50	0.50	0.64	0.64	0.91	0.91	
Hourly flow rate (vph)	2	112	31	0	138	7	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	204	142	146				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	204	142	146				
tC, single (s)	6.4	6.2	4.2				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.3				
p0 queue free %	100	88	98				
cM capacity (veh/h)	770	902	1393				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	114	31	145				
Volume Left	2	31	0				
Volume Right	112	0	7				
cSH	899	1393	1700				
Volume to Capacity	0.13	0.02	0.09				
Queue Length 95th (m)	3.5	0.5	0.0				
Control Delay (s)	9.6	7.6	0.0				
Lane LOS	А	А					
Approach Delay (s)	9.6	7.6	0.0				
Approach LOS	А						
Intersection Summary							
Average Delav			4.6				
Intersection Capacity Utiliza	ation		24.1%	IC	CU Level c	of Service	А
Analysis Period (min)			15				

1255 Fuller Avenue3: Site Access & Sandy Bay Road

	-	7	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħ			ŧ	Y		
Traffic Volume (veh/h)	17	9	0	64	31	0	
Future Volume (Veh/h)	17	9	0	64	31	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	18	10	0	70	34	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			28		93	23	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			28		93	23	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		96	100	
cM capacity (veh/h)			1585		907	1054	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	28	70	34				
Volume Left	0	0	34				
Volume Right	10	0	0				
cSH	1700	1585	907				
Volume to Capacity	0.02	0.00	0.04				
Queue Length 95th (m)	0.0	0.0	0.9				
Control Delay (s)	0.0	0.0	9.1				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.1				
Approach LOS			А				
Intersection Summary							
Average Delay			2.4				
Intersection Capacity Utilization	ation		13.4%	IC	U Level o	of Service	A
Analysis Period (min)			15				

	-	*	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ţ,			ភ្
Traffic Volume (veh/h)	86	9	299	25	1	48
Future Volume (Veh/h)	86	9	299	25	1	48
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.78	0.78	0.64	0.64	0.65	0.65
Hourly flow rate (vph)	110	12	467	39	2	74
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC. conflicting volume	564	486			506	
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	564	486			506	
tC, single (s)	6.4	6.2			4.1	
tC. 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	78	98			100	
cM capacity (veh/h)	489	585			1069	
Direction Lane #	W/R 1	NR 1	SB 1			
Volumo Total	100	506	76			
Volume Loft	122	500	20			
Volume Leit	10	20	2			
	12	1700	1060			
Volumo to Conceitu	497	0.20	0.00			
Oucus Longth 05th (m)	0.25	0.50	0.00			
Control Doloy (a)	1.1	0.0	0.0			
	14.0 D	0.0	0.2			
Lane LUS Approach Doloy (c)	14.6	0.0	A 0.2			
Approach LOS	14.0 D	0.0	0.2			
	D					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Util	ization		29.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	7	1	†	+	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	3	1	3	+	+	1
Traffic Volume (vph)	138	133	155	287	235	146
Future Volume (vph)	138	133	155	287	235	146
Lane Group Flow (vph)	212	205	201	373	270	168
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag	0.0	0.0	Lead		Lao	Lao
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Max	Max	Max
v/c Ratio	0.66	0.45	0.26	0.30	0.28	0.19
Control Delay	42.5	7.8	5.8	6.8	13.5	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.5	7.8	5.8	6.8	13.5	2.9
Queue Length 50th (m)	33.7	0.0	9.6	21.9	23.7	0.0
Queue Length 95th (m)	38.1	3.6	17.7	34.8	46.5	9.9
Internal Link Dist (m)	263.3	0.0		1013 1	521.8	0.0
Turn Bay Length (m)	200.0	30.0	45.0	1010.1	021.0	30.0
Base Canacity (vnh)	446	553	834	1250	975	877
Starvation Can Reductn	0 	000	007	1200	0,0	0
Snillhack Can Reductn	0	0	0	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0 37	0.24	0 30	0.28	0 10
	0.40	0.57	0.24	0.50	0.20	0.19
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 84.3	3					
Natural Cycle: 65						
Control Type: Semi Act-Und	coord					
Splits and Phases: 11: Fu	uller Avenu	e & Robe	rt Street I	East		

Ø2		↓ _{Ø4}
63 s		27 s
1 Ø5	 ✓ Ø6 	
21 s	42 s	

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٨	7	1	1	Ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	+	+	1		
Traffic Volume (vph)	138	133	155	287	235	146		
Future Volume (vph)	138	133	155	287	235	146		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1787	1599	1736	1845	1863	1524		
Flt Permitted	0.95	1.00	0.53	1.00	1.00	1.00		
Satd. Flow (perm)	1787	1599	969	1845	1863	1524		
Peak-hour factor, PHF	0.65	0.65	0.77	0.77	0.87	0.87		
Adj. Flow (vph)	212	205	201	373	270	168		
RTOR Reduction (vph)	0	168	0	0	0	80		
Lane Group Flow (vph)	212	37	201	373	270	88		
Heavy Vehicles (%)	1%	1%	4%	3%	2%	6%		
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4		5	2	6			
Permitted Phases	•	4	2	_	Ū	6		
Actuated Green, G (s)	15.1	15.1	57.1	57.1	44.1	44.1		
Effective Green, a (s)	15.1	15.1	57.1	57.1	44.1	44.1		
Actuated g/C Ratio	0.18	0.18	0.68	0.68	0.52	0.52		
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	320	286	739	1251	975	798		
v/s Ratio Prot	c0.12		0.03	c0.20	0.14			
v/s Ratio Perm		0.02	0.16			0.06		
v/c Ratio	0.66	0.13	0.27	0.30	0.28	0.11		
Uniform Delay, d1	32.2	29.0	5.1	5.5	11.2	10.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	5.1	0.2	0.2	0.6	0.7	0.3		
Delay (s)	37.3	29.2	5.3	6.1	11.9	10.4		
Level of Service	D	С	А	Α	В	В		
Approach Delay (s)	33.3			5.8	11.3			
Approach LOS	С			А	В			
Intersection Summary								
HCM 2000 Control Delay			15.5	H	CM 2000	Level of Servic	e	В
HCM 2000 Volume to Capa	acity ratio		0.40					
Actuated Cycle Length (s)			84.2	Si	um of lost	t time (s)	16.	.0
Intersection Capacity Utiliz	ation		42.6%	IC	U Level o	of Service		A
Analysis Period (min)			15					
c Critical Lane Group								

1255 Fuller Avenue1: Fuller Avenue & Broad Street

	٠	7	1	t	ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			é.	ţ,		
Traffic Volume (veh/h)	15	34	45	135	295	10	
Future Volume (Veh/h)	15	34	45	135	295	10	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.70	0.70	0.78	0.78	0.56	0.56	
Hourly flow rate (vph)	21	49	58	173	527	18	
Pedestrians	1						
Lane Width (m)	3.6						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	826	537	546				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	826	537	546				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	94	91	94				
cM capacity (veh/h)	325	538	1033				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	70	231	545				
Volume Left	21	58	0				
Volume Right	49	0	18				
cSH	449	1033	1700				
Volume to Capacity	0.16	0.06	0.32				
Queue Length 95th (m)	4.4	1.4	0.0				
Control Delay (s)	14.5	2.6	0.0				
Lane LOS	В	А					
Approach Delay (s)	14.5	2.6	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.9				
Intersection Capacity Utilizati	on		39.1%	IC	U Level o	f Service	
Analysis Period (min)			15				

1255 Fuller Avenue3: Site Access & Sandy Bay Road

	-	7	*	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	î,			aî A	¥		
Traffic Volume (veh/h)	66	32	0	28	18	0	
Future Volume (Veh/h)	66	32	0	28	18	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	72	35	0	30	20	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			107		120	90	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			107		120	90	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		98	100	
cM capacity (veh/h)			1484		876	968	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	107	30	20				
Volume Left	0	0	20				
Volume Right	35	0	0				
cSH	1700	1484	876				
Volume to Capacity	0.06	0.00	0.02				
Queue Length 95th (m)	0.0	0.0	0.6				
Control Delay (s)	0.0	0.0	9.2				
Lane LOS			А				
Approach Delay (s)	0.0	0.0	9.2				
Approach LOS			А				
Intersection Summary							
Average Delay			1.2				
Intersection Capacity Utiliza	ation		15.4%	IC	U Level c	of Service	A
Analysis Period (min)			15				

	1	*	Ť	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			et.
Traffic Volume (veh/h)	43	3	55	94	4	259
Future Volume (Veh/h)	43	3	55	94	4	259
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.79	0.79	0.57	0.57
Hourly flow rate (vph)	86	6	70	119	7	454
Pedestrians	1					1
Lane Width (m)	3.6					3.6
Walking Speed (m/s)	1.2					1.2
Percent Blockage	0					0
Right turn flare (veh)	Ŭ					Ŭ
Median type			None			None
Median storage veh)			10110			
Unstream signal (m)						
nX platoon unblocked						
vC. conflicting volume	508	132			190	
vC1_stage 1 conf vol	000	102			150	
vC1, stage 2 conf vol						
vCu, unblocked vol	508	132			100	
tC single (s)	530	6.2			130	
C, Single (S)	0.4	0.2			4.1	
tC, Z stage (s)	2.5	2.2			2.2	
IF (S)	0.0 00	0.0			2.2	
pu queue liee %	02	99			1205	
	405	922			1395	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	92	189	461			
Volume Left	86	0	7			
Volume Right	6	119	0			
cSH	481	1700	1395			
Volume to Capacity	0.19	0.11	0.01			
Queue Length 95th (m)	5.6	0.0	0.1			
Control Delay (s)	14.2	0.0	0.2			
Lane LOS	В		A			
Approach Delay (s)	14.2	0.0	0.2			
Approach LOS	В					
	_					
Intersection Summary			1.0			
Average Delay			1.9			
Intersection Capacity Utiliz	zation		27.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	≯	7	1	†	Ŧ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	5	+	٠	1
Traffic Volume (vph)	155	193	204	215	280	232
Future Volume (vph)	155	193	204	215	280	232
Lane Group Flow (vph)	168	210	215	226	406	336
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	5	2	6	6
Switch Phase			-		-	-
Minimum Initial (s)	10.0	10.0	4.5	10.0	10.0	10.0
Minimum Split (s)	25.0	25.0	9.0	30.0	30.0	30.0
Total Split (s)	27.0	27.0	21.0	63.0	42.0	42.0
Total Split (%)	30.0%	30.0%	23.3%	70.0%	46.7%	46.7%
Yellow Time (s)	4 0	4 0	3.0	4 0	4.0	4 0
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	4.0	6.0	6.0	6.0
Lead/Lag	0.0	0.0	Lead	0.0	l an	l an
Lead-Lag Ontimize?			Ves		Yes	Ves
Recall Mode	None	None	None	Max	May	May
v/c Ratio			0.32	0.18	0.40	0.3/
Control Delay	10.55	8.7	5.6	53	1/ 0	13
	-0.5	0.7	0.0	0.0	0.0	4.5
Total Dolay	40.5	9.7	5.6	5.3	14.0	1.3
Ouque Length 50th (m)	40.0	0.7	0.0	10.0	36.2	4.5
Queue Length 30th (m)	20.0	17.7	9.Z 20 F	10.0	10.0	0.4
Queue Length 95th (III)	40.0	17.7	20.5	20.Z	49.9	9.9
Turn Boy Longth (m)	203.3	20.0	15.0	1013.1	021.0	20.0
Turri Day Lerigtin (III)	151	50.0	45.0	1000	1007	30.0
Base Capacity (vpn)	451	559	/08	1289	1007	9//
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced V/C Ratio	0.37	0.38	0.28	0.18	0.40	0.34
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 82.	5					
Natural Cycle: 65						
Control Type: Semi Act-Und	coord					

Splits and Phases: 11: Fuller Avenue & Robert Street East

1 Ø2	54	5	A 04	3.9
63 s			27 s	
1 Ø5	Ø6			
21 s	42 s			

1255 Fuller Avenue 11: Fuller Avenue & Robert Street East

	٠	7	1	1	Ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	7	1	5	•	•	1		
Traffic Volume (vph)	155	193	204	215	280	232		
Future Volume (vph)	155	193	204	215	280	232		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	1863	1881	1599		
Flt Permitted	0.95	1.00	0.42	1.00	1.00	1.00		
Satd. Flow (perm)	1770	1583	790	1863	1881	1599		
Peak-hour factor, PHF	0.92	0.92	0.95	0.95	0.69	0.69		
Adj. Flow (vph)	168	210	215	226	406	336		
RTOR Reduction (vph)	0	176	0	0	0	122		
Lane Group Flow (vph)	168	34	215	226	406	214		
Heavy Vehicles (%)	2%	2%	2%	2%	1%	1%		
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4		5	2	6			
Permitted Phases		4	2			6		
Actuated Green, G (s)	13.4	13.4	57.1	57.1	44.2	44.2		
Effective Green, g (s)	13.4	13.4	57.1	57.1	44.2	44.2		
Actuated g/C Ratio	0.16	0.16	0.69	0.69	0.54	0.54		
Clearance Time (s)	6.0	6.0	4.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	287	257	652	1289	1007	856		
v/s Ratio Prot	c0.09		c0.04	0.12	c0.22			
v/s Ratio Perm		0.02	0.19			0.13		
v/c Ratio	0.59	0.13	0.33	0.18	0.40	0.25		
Uniform Delay, d1	32.0	29.6	5.1	4.5	11.3	10.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.0	0.2	0.3	0.3	1.2	0.7		
Delay (s)	35.0	29.8	5.4	4.7	12.5	11.0		
Level of Service	D	С	А	А	В	В		
Approach Delay (s)	32.1			5.1	11.8			
Approach LOS	С			А	В			
Intersection Summary								
HCM 2000 Control Delay			14.8	Н	CM 2000	Level of Service	e	В
HCM 2000 Volume to Capac	city ratio		0.43					
Actuated Cycle Length (s)			82.5	S	um of lost	time (s)	16.	0
Intersection Capacity Utilizat	tion		48.0%	IC	U Level o	of Service		A
Analysis Period (min)			15					
c Critical Lane Group								

1255 Fuller Avenue 1000239074 Ontario Inc. JDE-21181 Date: August 9th, 2023

Appendix H – MTO Left Turn Analysis

Total (2035) PM Peak - SB on Fuller Avenue at Fuller Avenue / Sandy Bay Road

Total (2035) PM Peak - NB on Fuller Avenue at Fuller Avenue / Broad Street

1255 Fuller Avenue 1000239074 Ontario Inc. JDE-21181 Date: August 9th, 2023

Appendix I – OTM Signal Justification Sheets

Justification No. 7 - Total (2035) Traffic

Site Access / Sandy Bay Road

			Compliance			Signal	Underground
Justification	Description		Sectional		Entiro %	Warrant	Provisions
		Rest. Flow	Numerical	%		vvariant	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	900	66	7%	3%	NO	NO
	B. Vehicle volume, along minor streets						
	(average hour)	255	12	5%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	900	44	5%		NO	NO
	B. Combined vehicle and pedestrian				3%		
	volume crossing artery from minor						
	streets (average hour)	170	12	7%		NO	NO

Justification No. 7 - Total (2035) Traffic

Fuller Avenue / Sandy Bay Road

			(Compliance	9	Signal	Underground
Justification	Description		Sectional		Entiro %	Warrant	Provisions
		Rest. Flow	Numerical	%		wanan	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	900	248	28%	14%	NO	NO
	B. Vehicle volume, along minor streets						
	(average hour)	255	52	20%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	900	167	19%		NO	NO
	B. Combined vehicle and pedestrian				12%		
	volume crossing artery from minor						
	streets (average hour)	170	49	29%		NO	NO

Justification No. 7 - Total (2035) Traffic

Fuller Avenue / Broad Street

			(Compliance	9	Signal	Underground
Justification	Description		Sectional		Entire %	Warrant	Provisions
		Rest. Flow	Numerical	%		wanan	Warrant
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches						
	(average hour)	900	267	30%	7%	NO	NO
	B. Vehicle volume, along minor streets						
	(average hour)	255	27	10%		NO	NO
2. Delay to cross traffic	A. Vehicle volume, major street						
	(average hour)	900	236	26%		NO	NO
	B. Combined vehicle and pedestrian				2%		
	volume crossing artery from minor						
	streets (average hour)	170	4	2%		NO	NO